Matches in SemOpenAlex for { <https://semopenalex.org/work/W3020349211> ?p ?o ?g. }
- W3020349211 endingPage "e18897" @default.
- W3020349211 startingPage "e18897" @default.
- W3020349211 abstract "Background SARS-CoV-2 (severe acute respiratory coronavirus 2) was spreading rapidly in South Korea at the end of February 2020 following its initial outbreak in China, making Korea the new center of global attention. The role of social media amid the current coronavirus disease (COVID-19) pandemic has often been criticized, but little systematic research has been conducted on this issue. Social media functions as a convenient source of information in pandemic situations. Objective Few infodemiology studies have applied network analysis in conjunction with content analysis. This study investigates information transmission networks and news-sharing behaviors regarding COVID-19 on Twitter in Korea. The real time aggregation of social media data can serve as a starting point for designing strategic messages for health campaigns and establishing an effective communication system during this outbreak. Methods Korean COVID-19-related Twitter data were collected on February 29, 2020. Our final sample comprised of 43,832 users and 78,233 relationships on Twitter. We generated four networks in terms of key issues regarding COVID-19 in Korea. This study comparatively investigates how COVID-19-related issues have circulated on Twitter through network analysis. Next, we classified top news channels shared via tweets. Lastly, we conducted a content analysis of news frames used in the top-shared sources. Results The network analysis suggests that the spread of information was faster in the Coronavirus network than in the other networks (Corona19, Shincheon, and Daegu). People who used the word “Coronavirus” communicated more frequently with each other. The spread of information was faster, and the diameter value was lower than for those who used other terms. Many of the news items highlighted the positive roles being played by individuals and groups, directing readers’ attention to the crisis. Ethical issues such as deviant behavior among the population and an entertainment frame highlighting celebrity donations also emerged often. There was a significant difference in the use of nonportal (n=14) and portal news (n=26) sites between the four network types. The news frames used in the top sources were similar across the networks (P=.89, 95% CI 0.004-0.006). Tweets containing medically framed news articles (mean 7.571, SD 1.988) were found to be more popular than tweets that included news articles adopting nonmedical frames (mean 5.060, SD 2.904; N=40, P=.03, 95% CI 0.169-4.852). Conclusions Most of the popular news on Twitter had nonmedical frames. Nevertheless, the spillover effect of the news articles that delivered medical information about COVID-19 was greater than that of news with nonmedical frames. Social media network analytics cannot replace the work of public health officials; however, monitoring public conversations and media news that propagates rapidly can assist public health professionals in their complex and fast-paced decision-making processes." @default.
- W3020349211 created "2020-05-01" @default.
- W3020349211 creator A5002088024 @default.
- W3020349211 creator A5003159725 @default.
- W3020349211 creator A5047599583 @default.
- W3020349211 date "2020-05-05" @default.
- W3020349211 modified "2023-10-05" @default.
- W3020349211 title "Conversations and Medical News Frames on Twitter: Infodemiological Study on COVID-19 in South Korea" @default.
- W3020349211 cites W1428111796 @default.
- W3020349211 cites W1975276547 @default.
- W3020349211 cites W1977519438 @default.
- W3020349211 cites W1984926150 @default.
- W3020349211 cites W2001442493 @default.
- W3020349211 cites W2019432915 @default.
- W3020349211 cites W2029938741 @default.
- W3020349211 cites W2043229633 @default.
- W3020349211 cites W2047940964 @default.
- W3020349211 cites W2074528886 @default.
- W3020349211 cites W2098785840 @default.
- W3020349211 cites W2100387689 @default.
- W3020349211 cites W2107147570 @default.
- W3020349211 cites W2116117260 @default.
- W3020349211 cites W2117239687 @default.
- W3020349211 cites W2147194983 @default.
- W3020349211 cites W2151936673 @default.
- W3020349211 cites W2157258619 @default.
- W3020349211 cites W2193397352 @default.
- W3020349211 cites W2258441479 @default.
- W3020349211 cites W2328890066 @default.
- W3020349211 cites W2333440727 @default.
- W3020349211 cites W2408299270 @default.
- W3020349211 cites W2563892432 @default.
- W3020349211 cites W2574166237 @default.
- W3020349211 cites W2579000241 @default.
- W3020349211 cites W2597797135 @default.
- W3020349211 cites W2619822900 @default.
- W3020349211 cites W2754083969 @default.
- W3020349211 cites W2766352063 @default.
- W3020349211 cites W2808416012 @default.
- W3020349211 cites W2907523124 @default.
- W3020349211 cites W2909860169 @default.
- W3020349211 cites W2922402807 @default.
- W3020349211 cites W2988757996 @default.
- W3020349211 cites W2995184108 @default.
- W3020349211 cites W3005084260 @default.
- W3020349211 cites W3005636597 @default.
- W3020349211 cites W3013630526 @default.
- W3020349211 cites W950821216 @default.
- W3020349211 doi "https://doi.org/10.2196/18897" @default.
- W3020349211 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7202309" @default.
- W3020349211 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32325426" @default.
- W3020349211 hasPublicationYear "2020" @default.
- W3020349211 type Work @default.
- W3020349211 sameAs 3020349211 @default.
- W3020349211 citedByCount "175" @default.
- W3020349211 countsByYear W30203492112020 @default.
- W3020349211 countsByYear W30203492112021 @default.
- W3020349211 countsByYear W30203492112022 @default.
- W3020349211 countsByYear W30203492112023 @default.
- W3020349211 crossrefType "journal-article" @default.
- W3020349211 hasAuthorship W3020349211A5002088024 @default.
- W3020349211 hasAuthorship W3020349211A5003159725 @default.
- W3020349211 hasAuthorship W3020349211A5047599583 @default.
- W3020349211 hasBestOaLocation W30203492111 @default.
- W3020349211 hasConcept C108827166 @default.
- W3020349211 hasConcept C112698675 @default.
- W3020349211 hasConcept C114713312 @default.
- W3020349211 hasConcept C136764020 @default.
- W3020349211 hasConcept C142724271 @default.
- W3020349211 hasConcept C144024400 @default.
- W3020349211 hasConcept C144133560 @default.
- W3020349211 hasConcept C162446236 @default.
- W3020349211 hasConcept C2779134260 @default.
- W3020349211 hasConcept C3008058167 @default.
- W3020349211 hasConcept C36289849 @default.
- W3020349211 hasConcept C41008148 @default.
- W3020349211 hasConcept C4727928 @default.
- W3020349211 hasConcept C518677369 @default.
- W3020349211 hasConcept C524204448 @default.
- W3020349211 hasConcept C71924100 @default.
- W3020349211 hasConcept C89623803 @default.
- W3020349211 hasConceptScore W3020349211C108827166 @default.
- W3020349211 hasConceptScore W3020349211C112698675 @default.
- W3020349211 hasConceptScore W3020349211C114713312 @default.
- W3020349211 hasConceptScore W3020349211C136764020 @default.
- W3020349211 hasConceptScore W3020349211C142724271 @default.
- W3020349211 hasConceptScore W3020349211C144024400 @default.
- W3020349211 hasConceptScore W3020349211C144133560 @default.
- W3020349211 hasConceptScore W3020349211C162446236 @default.
- W3020349211 hasConceptScore W3020349211C2779134260 @default.
- W3020349211 hasConceptScore W3020349211C3008058167 @default.
- W3020349211 hasConceptScore W3020349211C36289849 @default.
- W3020349211 hasConceptScore W3020349211C41008148 @default.
- W3020349211 hasConceptScore W3020349211C4727928 @default.
- W3020349211 hasConceptScore W3020349211C518677369 @default.
- W3020349211 hasConceptScore W3020349211C524204448 @default.
- W3020349211 hasConceptScore W3020349211C71924100 @default.
- W3020349211 hasConceptScore W3020349211C89623803 @default.