Matches in SemOpenAlex for { <https://semopenalex.org/work/W3020375718> ?p ?o ?g. }
- W3020375718 abstract "Lung cancer can be classified into two main categories: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), which are different in treatment strategy and survival probability. The lung CT images of SCLC and NSCLC are similar such that their subtle differences are hardly visually discernible by the human eye through conventional imaging evaluation. We hypothesize that SCLC/NSCLC differentiation could be achieved via computerized image feature analysis and classification in feature space, as termed a radiomic model. The purpose of this study was to use CT radiomics to differentiate SCLC from NSCLC adenocarcinoma. Patients with primary lung cancer, either SCLC or NSCLC adenocarcinoma, were retrospectively identified. The post-diagnosis pre-treatment lung CT images were used to segment the lung cancers. Radiomic features were extracted from histogram-based statistics, textural analysis of tumor images and their wavelet transforms. A minimal-redundancy-maximal-relevance method was used for feature selection. The predictive model was constructed with a multilayer artificial neural network. The performance of the SCLC/NSCLC adenocarcinoma classifier was evaluated by the area under the receiver operating characteristic curve (AUC). Our study cohort consisted of 69 primary lung cancer patients with SCLC (n = 35; age mean ± SD = 66.91± 9.75 years), and NSCLC adenocarcinoma (n = 34; age mean ± SD = 58.55 ± 11.94 years). The SCLC group had more male patients and smokers than the NSCLC group (P < 0.05). Our SCLC/NSCLC classifier achieved an overall performance of AUC of 0.93 (95% confidence interval = [0.85, 0.97]), sensitivity = 0.85, and specificity = 0.85). Adding clinical data such as smoking history could improve the performance slightly. The top ranking radiomic features were mostly textural features. Our results showed that CT radiomics could quantitatively represent tumor heterogeneity and therefore could be used to differentiate primary lung cancer subtypes with satisfying results. CT image processing with the wavelet transformation technique enhanced the radiomic features for SCLC/NSCLC classification. Our pilot study should motivate further investigation of radiomics as a non-invasive approach for early diagnosis and treatment of lung cancer." @default.
- W3020375718 created "2020-05-01" @default.
- W3020375718 creator A5003826371 @default.
- W3020375718 creator A5017277166 @default.
- W3020375718 creator A5018536813 @default.
- W3020375718 creator A5020914791 @default.
- W3020375718 creator A5026346370 @default.
- W3020375718 creator A5027733252 @default.
- W3020375718 creator A5029920565 @default.
- W3020375718 creator A5036266050 @default.
- W3020375718 creator A5051970161 @default.
- W3020375718 creator A5058368410 @default.
- W3020375718 creator A5073649477 @default.
- W3020375718 creator A5076857616 @default.
- W3020375718 creator A5085256777 @default.
- W3020375718 creator A5087117639 @default.
- W3020375718 creator A5090006268 @default.
- W3020375718 date "2020-04-22" @default.
- W3020375718 modified "2023-10-01" @default.
- W3020375718 title "Differentiating Peripherally-Located Small Cell Lung Cancer From Non-small Cell Lung Cancer Using a CT Radiomic Approach" @default.
- W3020375718 cites W1885011039 @default.
- W3020375718 cites W2024492396 @default.
- W3020375718 cites W2044465660 @default.
- W3020375718 cites W2103004421 @default.
- W3020375718 cites W2104117155 @default.
- W3020375718 cites W2107403628 @default.
- W3020375718 cites W2128739912 @default.
- W3020375718 cites W2134640949 @default.
- W3020375718 cites W2136481498 @default.
- W3020375718 cites W2154053567 @default.
- W3020375718 cites W2154996469 @default.
- W3020375718 cites W2174661749 @default.
- W3020375718 cites W2261070854 @default.
- W3020375718 cites W2333277922 @default.
- W3020375718 cites W2512664991 @default.
- W3020375718 cites W2513515804 @default.
- W3020375718 cites W2585160008 @default.
- W3020375718 cites W2588002747 @default.
- W3020375718 cites W2591460579 @default.
- W3020375718 cites W2592992287 @default.
- W3020375718 cites W2624211040 @default.
- W3020375718 cites W2726313690 @default.
- W3020375718 cites W2737453412 @default.
- W3020375718 cites W2773826958 @default.
- W3020375718 cites W2790092584 @default.
- W3020375718 cites W2796000042 @default.
- W3020375718 cites W2802416980 @default.
- W3020375718 cites W2806809191 @default.
- W3020375718 cites W2903559330 @default.
- W3020375718 cites W2904258904 @default.
- W3020375718 cites W2908565340 @default.
- W3020375718 cites W2911188335 @default.
- W3020375718 cites W2940053266 @default.
- W3020375718 cites W2946185430 @default.
- W3020375718 cites W2949393136 @default.
- W3020375718 cites W2951071083 @default.
- W3020375718 cites W4244337865 @default.
- W3020375718 doi "https://doi.org/10.3389/fonc.2020.00593" @default.
- W3020375718 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7188953" @default.
- W3020375718 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32391274" @default.
- W3020375718 hasPublicationYear "2020" @default.
- W3020375718 type Work @default.
- W3020375718 sameAs 3020375718 @default.
- W3020375718 citedByCount "19" @default.
- W3020375718 countsByYear W30203757182021 @default.
- W3020375718 countsByYear W30203757182022 @default.
- W3020375718 countsByYear W30203757182023 @default.
- W3020375718 crossrefType "journal-article" @default.
- W3020375718 hasAuthorship W3020375718A5003826371 @default.
- W3020375718 hasAuthorship W3020375718A5017277166 @default.
- W3020375718 hasAuthorship W3020375718A5018536813 @default.
- W3020375718 hasAuthorship W3020375718A5020914791 @default.
- W3020375718 hasAuthorship W3020375718A5026346370 @default.
- W3020375718 hasAuthorship W3020375718A5027733252 @default.
- W3020375718 hasAuthorship W3020375718A5029920565 @default.
- W3020375718 hasAuthorship W3020375718A5036266050 @default.
- W3020375718 hasAuthorship W3020375718A5051970161 @default.
- W3020375718 hasAuthorship W3020375718A5058368410 @default.
- W3020375718 hasAuthorship W3020375718A5073649477 @default.
- W3020375718 hasAuthorship W3020375718A5076857616 @default.
- W3020375718 hasAuthorship W3020375718A5085256777 @default.
- W3020375718 hasAuthorship W3020375718A5087117639 @default.
- W3020375718 hasAuthorship W3020375718A5090006268 @default.
- W3020375718 hasBestOaLocation W30203757181 @default.
- W3020375718 hasConcept C121608353 @default.
- W3020375718 hasConcept C126322002 @default.
- W3020375718 hasConcept C126838900 @default.
- W3020375718 hasConcept C143998085 @default.
- W3020375718 hasConcept C2776256026 @default.
- W3020375718 hasConcept C2777714996 @default.
- W3020375718 hasConcept C2781182431 @default.
- W3020375718 hasConcept C58471807 @default.
- W3020375718 hasConcept C71924100 @default.
- W3020375718 hasConceptScore W3020375718C121608353 @default.
- W3020375718 hasConceptScore W3020375718C126322002 @default.
- W3020375718 hasConceptScore W3020375718C126838900 @default.
- W3020375718 hasConceptScore W3020375718C143998085 @default.
- W3020375718 hasConceptScore W3020375718C2776256026 @default.
- W3020375718 hasConceptScore W3020375718C2777714996 @default.
- W3020375718 hasConceptScore W3020375718C2781182431 @default.