Matches in SemOpenAlex for { <https://semopenalex.org/work/W3020392805> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W3020392805 endingPage "32" @default.
- W3020392805 startingPage "26" @default.
- W3020392805 abstract "Various techniques have been developed to detect cyber malware attacks, such as behavior based method which utilizes the analysis of permissions and system calls made by a process. However, this technique cannot handle the types of malware that continue to evolve. Therefore, an analysis of other suspicious activities – namely network traffic or network traffic – need to be conducted. Network traffic acts as a medium for sending information used by malware developers to communicate with malware infecting a victim's device. Malware analyzed in this study is divided into 3 classes, namely adware, general malware, and benign. The malware classification implements 79 features extracted from network traffic flow and an analysis of these features using a Neural Network that matches the characteristics of a time-series feature. The total flow of network traffic used is 442,240 data. The results showed that 15 main features selected based on literature studies resulted in F-measure 0.6404 with hidden neurons 12, learning rate 0.1, and epoch 300. As a comparison, the researchers chose 12 features based on the nature of the malware possessed, with the F-measure score of 0.666 with hidden neurons 12, learning rate 0.05, and epoch 300. This study found the importance of data normalization technique to ensure that no feature was far more dominant than other features. It was concluded that the analysis of network traffic features using Neural Network can be used to detect cyber malware attacks and more features does not imply better detection performance, but real-time malware detection is required for network traffic on IoT devices and smartphones." @default.
- W3020392805 created "2020-05-01" @default.
- W3020392805 creator A5022872845 @default.
- W3020392805 creator A5055077597 @default.
- W3020392805 creator A5064475786 @default.
- W3020392805 date "2020-04-22" @default.
- W3020392805 modified "2023-09-25" @default.
- W3020392805 title "Detection of Cyber Malware Attack Based on Network Traffic Features Using Neural Network" @default.
- W3020392805 cites W1866429171 @default.
- W3020392805 cites W2051000513 @default.
- W3020392805 cites W2073119119 @default.
- W3020392805 cites W2091682045 @default.
- W3020392805 cites W2116992865 @default.
- W3020392805 cites W2125011234 @default.
- W3020392805 cites W2200832203 @default.
- W3020392805 cites W2394970111 @default.
- W3020392805 doi "https://doi.org/10.23917/khif.v6i1.8869" @default.
- W3020392805 hasPublicationYear "2020" @default.
- W3020392805 type Work @default.
- W3020392805 sameAs 3020392805 @default.
- W3020392805 citedByCount "2" @default.
- W3020392805 countsByYear W30203928052020 @default.
- W3020392805 countsByYear W30203928052023 @default.
- W3020392805 crossrefType "journal-article" @default.
- W3020392805 hasAuthorship W3020392805A5022872845 @default.
- W3020392805 hasAuthorship W3020392805A5055077597 @default.
- W3020392805 hasAuthorship W3020392805A5064475786 @default.
- W3020392805 hasBestOaLocation W30203928051 @default.
- W3020392805 hasConcept C154945302 @default.
- W3020392805 hasConcept C31258907 @default.
- W3020392805 hasConcept C38652104 @default.
- W3020392805 hasConcept C41008148 @default.
- W3020392805 hasConcept C50644808 @default.
- W3020392805 hasConcept C541664917 @default.
- W3020392805 hasConceptScore W3020392805C154945302 @default.
- W3020392805 hasConceptScore W3020392805C31258907 @default.
- W3020392805 hasConceptScore W3020392805C38652104 @default.
- W3020392805 hasConceptScore W3020392805C41008148 @default.
- W3020392805 hasConceptScore W3020392805C50644808 @default.
- W3020392805 hasConceptScore W3020392805C541664917 @default.
- W3020392805 hasIssue "1" @default.
- W3020392805 hasLocation W30203928051 @default.
- W3020392805 hasOpenAccess W3020392805 @default.
- W3020392805 hasPrimaryLocation W30203928051 @default.
- W3020392805 hasRelatedWork W1561877636 @default.
- W3020392805 hasRelatedWork W1827256152 @default.
- W3020392805 hasRelatedWork W1855034413 @default.
- W3020392805 hasRelatedWork W1876478908 @default.
- W3020392805 hasRelatedWork W1936417930 @default.
- W3020392805 hasRelatedWork W2259219744 @default.
- W3020392805 hasRelatedWork W2623682848 @default.
- W3020392805 hasRelatedWork W2774686757 @default.
- W3020392805 hasRelatedWork W3016595359 @default.
- W3020392805 hasRelatedWork W3042673639 @default.
- W3020392805 hasVolume "6" @default.
- W3020392805 isParatext "false" @default.
- W3020392805 isRetracted "false" @default.
- W3020392805 magId "3020392805" @default.
- W3020392805 workType "article" @default.