Matches in SemOpenAlex for { <https://semopenalex.org/work/W3020405912> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W3020405912 abstract "The latter two decades of the last century saw significant improvements in External Beam Radiotherapy (EBRT), moved primarily by the advances in imaging modalities and computer-based treatment planning. These advances led to introducing the addition of a fourth dimension, time, to the three-dimensional EBRT arena. This new era in EBRT brings with it challenges and opportunities, in particular to compensate for the effect of respiratory-induced target motion and enhancing treatment delivery. Thus, characterising and modelling respiratory motion is of major importance in this research area. This thesis aims to enhance the understanding and control the effect of respiratory motion. As part of this work, the first principal component analysis (PCA) of respiratory motion is presented, as a basis for compactly and visually representing respiratory style and variation. These studies can be divided into two main aspects: firstly, understanding and characterising respiratory motion as the basis of any further steps towards compensating respiratory motion and secondly, utilising this knowledge in predicting and correlating internal and external respiratory motion in the abdominal thoracic region. This work has been developed starting with a piecewise sinusoidal model in an Eigenspace for modelling. Adaptive kernel density estimation (AKDE) for prediction and finally Canonical Correlation Analysis (CCA) for external-internal target correlation. A comparative study between these proposed approaches and state-of-the-art prior works showed promising results in terms of accuracy and computational efficiency: 20% error reduction compared to support vector regression (SVR) and kernel density estimation (KDE) and a significant reduction in computation speed during training stage. This journey into modelling and predicting respiratory behaviour has naturally raised questions of how best to track external motion. The need to track the surface with more than one marker, established within the aforementioned PCA analysis, motivates the desire for markerless tracking. Therefore, two different markerless systems have been studied, as potential solutions for this area, combined with a mesh model of the anterior surface. This suggests that the Microsoft Kinect camera is a promising low-cost technology for makerless respiratory tracking with less than 3. 1 +- 0. 6 mm accuracy." @default.
- W3020405912 created "2020-05-01" @default.
- W3020405912 creator A5088866139 @default.
- W3020405912 date "2012-01-01" @default.
- W3020405912 modified "2023-09-28" @default.
- W3020405912 title "Adaptive Modelling and Prediction of Respiratory Motion in External Beam Radiotherapy." @default.
- W3020405912 hasPublicationYear "2012" @default.
- W3020405912 type Work @default.
- W3020405912 sameAs 3020405912 @default.
- W3020405912 citedByCount "0" @default.
- W3020405912 crossrefType "dissertation" @default.
- W3020405912 hasAuthorship W3020405912A5088866139 @default.
- W3020405912 hasConcept C10161872 @default.
- W3020405912 hasConcept C104114177 @default.
- W3020405912 hasConcept C111335779 @default.
- W3020405912 hasConcept C154945302 @default.
- W3020405912 hasConcept C2524010 @default.
- W3020405912 hasConcept C27438332 @default.
- W3020405912 hasConcept C33923547 @default.
- W3020405912 hasConcept C41008148 @default.
- W3020405912 hasConceptScore W3020405912C10161872 @default.
- W3020405912 hasConceptScore W3020405912C104114177 @default.
- W3020405912 hasConceptScore W3020405912C111335779 @default.
- W3020405912 hasConceptScore W3020405912C154945302 @default.
- W3020405912 hasConceptScore W3020405912C2524010 @default.
- W3020405912 hasConceptScore W3020405912C27438332 @default.
- W3020405912 hasConceptScore W3020405912C33923547 @default.
- W3020405912 hasConceptScore W3020405912C41008148 @default.
- W3020405912 hasLocation W30204059121 @default.
- W3020405912 hasOpenAccess W3020405912 @default.
- W3020405912 hasPrimaryLocation W30204059121 @default.
- W3020405912 hasRelatedWork W1128634257 @default.
- W3020405912 hasRelatedWork W1539343413 @default.
- W3020405912 hasRelatedWork W1572812120 @default.
- W3020405912 hasRelatedWork W1679040443 @default.
- W3020405912 hasRelatedWork W2012082409 @default.
- W3020405912 hasRelatedWork W2016689589 @default.
- W3020405912 hasRelatedWork W2045657253 @default.
- W3020405912 hasRelatedWork W2108870989 @default.
- W3020405912 hasRelatedWork W2561586343 @default.
- W3020405912 hasRelatedWork W2625034161 @default.
- W3020405912 hasRelatedWork W2779726110 @default.
- W3020405912 hasRelatedWork W2889619851 @default.
- W3020405912 hasRelatedWork W3004486717 @default.
- W3020405912 hasRelatedWork W3020865261 @default.
- W3020405912 hasRelatedWork W3035480680 @default.
- W3020405912 hasRelatedWork W3118598657 @default.
- W3020405912 hasRelatedWork W3130833501 @default.
- W3020405912 hasRelatedWork W3133624642 @default.
- W3020405912 hasRelatedWork W60993532 @default.
- W3020405912 hasRelatedWork W775429885 @default.
- W3020405912 isParatext "false" @default.
- W3020405912 isRetracted "false" @default.
- W3020405912 magId "3020405912" @default.
- W3020405912 workType "dissertation" @default.