Matches in SemOpenAlex for { <https://semopenalex.org/work/W3020483042> ?p ?o ?g. }
- W3020483042 endingPage "796" @default.
- W3020483042 startingPage "784" @default.
- W3020483042 abstract "With the prevalence of the Internet, online reviews have become a valuable information resource for people. However, the authenticity of online reviews remains a concern, and deceptive reviews have become one of the most urgent network security problems to be solved. Review spams will mislead users into making suboptimal choices and inflict their trust in online reviews. Most existing research manually extracted features and labeled training samples, which are usually complicated and time-consuming. This paper focuses primarily on a neglected emerging domain - movie review, and develops a novel unsupervised spam detection model with an attention mechanism. By extracting the statistical features of reviews, it is revealed that users will express their sentiments on different aspects of movies in reviews. An attention mechanism is introduced in the review embedding, and the conditional generative adversarial network is exploited to learn users' review style for different genres of movies. The proposed model is evaluated on movie reviews crawled from Douban, a Chinese online community where people could express their feelings about movies. The experimental results demonstrate the superior performance of the proposed approach." @default.
- W3020483042 created "2020-05-01" @default.
- W3020483042 creator A5000102478 @default.
- W3020483042 creator A5006614329 @default.
- W3020483042 creator A5011958968 @default.
- W3020483042 creator A5091227928 @default.
- W3020483042 date "2021-01-01" @default.
- W3020483042 modified "2023-10-14" @default.
- W3020483042 title "An Attention-Based Unsupervised Adversarial Model for Movie Review Spam Detection" @default.
- W3020483042 cites W1029641576 @default.
- W3020483042 cites W1412536301 @default.
- W3020483042 cites W1851422430 @default.
- W3020483042 cites W2047756776 @default.
- W3020483042 cites W2064058256 @default.
- W3020483042 cites W2069051541 @default.
- W3020483042 cites W2072566913 @default.
- W3020483042 cites W2086289305 @default.
- W3020483042 cites W2092126505 @default.
- W3020483042 cites W2112744748 @default.
- W3020483042 cites W2132870739 @default.
- W3020483042 cites W2142972908 @default.
- W3020483042 cites W2148034183 @default.
- W3020483042 cites W2159359879 @default.
- W3020483042 cites W2160660844 @default.
- W3020483042 cites W2189360217 @default.
- W3020483042 cites W2239794783 @default.
- W3020483042 cites W2250879510 @default.
- W3020483042 cites W2296719434 @default.
- W3020483042 cites W2427312199 @default.
- W3020483042 cites W2473249556 @default.
- W3020483042 cites W2518186251 @default.
- W3020483042 cites W2558954386 @default.
- W3020483042 cites W2591945600 @default.
- W3020483042 cites W2599354622 @default.
- W3020483042 cites W2603014491 @default.
- W3020483042 cites W2611763223 @default.
- W3020483042 cites W2763286567 @default.
- W3020483042 cites W2767471303 @default.
- W3020483042 cites W2784167769 @default.
- W3020483042 cites W2794432532 @default.
- W3020483042 cites W2801566476 @default.
- W3020483042 cites W2888975113 @default.
- W3020483042 cites W2916582722 @default.
- W3020483042 cites W2921297172 @default.
- W3020483042 cites W2922114517 @default.
- W3020483042 cites W2935154238 @default.
- W3020483042 cites W2952218416 @default.
- W3020483042 cites W2964232409 @default.
- W3020483042 cites W3098653001 @default.
- W3020483042 cites W3122952517 @default.
- W3020483042 cites W3124524575 @default.
- W3020483042 cites W4254182148 @default.
- W3020483042 doi "https://doi.org/10.1109/tmm.2020.2990085" @default.
- W3020483042 hasPublicationYear "2021" @default.
- W3020483042 type Work @default.
- W3020483042 sameAs 3020483042 @default.
- W3020483042 citedByCount "30" @default.
- W3020483042 countsByYear W30204830422020 @default.
- W3020483042 countsByYear W30204830422021 @default.
- W3020483042 countsByYear W30204830422022 @default.
- W3020483042 countsByYear W30204830422023 @default.
- W3020483042 crossrefType "journal-article" @default.
- W3020483042 hasAuthorship W3020483042A5000102478 @default.
- W3020483042 hasAuthorship W3020483042A5006614329 @default.
- W3020483042 hasAuthorship W3020483042A5011958968 @default.
- W3020483042 hasAuthorship W3020483042A5091227928 @default.
- W3020483042 hasBestOaLocation W30204830422 @default.
- W3020483042 hasConcept C110875604 @default.
- W3020483042 hasConcept C111472728 @default.
- W3020483042 hasConcept C119857082 @default.
- W3020483042 hasConcept C134306372 @default.
- W3020483042 hasConcept C136764020 @default.
- W3020483042 hasConcept C138885662 @default.
- W3020483042 hasConcept C154945302 @default.
- W3020483042 hasConcept C171686336 @default.
- W3020483042 hasConcept C23123220 @default.
- W3020483042 hasConcept C2522767166 @default.
- W3020483042 hasConcept C33923547 @default.
- W3020483042 hasConcept C36503486 @default.
- W3020483042 hasConcept C37736160 @default.
- W3020483042 hasConcept C41008148 @default.
- W3020483042 hasConcept C66402592 @default.
- W3020483042 hasConcept C89611455 @default.
- W3020483042 hasConceptScore W3020483042C110875604 @default.
- W3020483042 hasConceptScore W3020483042C111472728 @default.
- W3020483042 hasConceptScore W3020483042C119857082 @default.
- W3020483042 hasConceptScore W3020483042C134306372 @default.
- W3020483042 hasConceptScore W3020483042C136764020 @default.
- W3020483042 hasConceptScore W3020483042C138885662 @default.
- W3020483042 hasConceptScore W3020483042C154945302 @default.
- W3020483042 hasConceptScore W3020483042C171686336 @default.
- W3020483042 hasConceptScore W3020483042C23123220 @default.
- W3020483042 hasConceptScore W3020483042C2522767166 @default.
- W3020483042 hasConceptScore W3020483042C33923547 @default.
- W3020483042 hasConceptScore W3020483042C36503486 @default.
- W3020483042 hasConceptScore W3020483042C37736160 @default.
- W3020483042 hasConceptScore W3020483042C41008148 @default.
- W3020483042 hasConceptScore W3020483042C66402592 @default.