Matches in SemOpenAlex for { <https://semopenalex.org/work/W3020595812> ?p ?o ?g. }
- W3020595812 endingPage "107788" @default.
- W3020595812 startingPage "107788" @default.
- W3020595812 abstract "Foreknowledge of the spatiotemporal drivers of crop yield would provide a valuable source of information to optimize on-farm inputs and maximize profitability. In recent years, an abundance of spatial data providing information on soils, topography, and vegetation condition have become available from both proximal and remote sensing platforms. Given the wide range of data costs (between USD $0−50/ha), it is important to understand where often limited financial resources should be directed to optimize field production. Two key questions arise. First, will these data actually aid in better fine-resolution yield prediction to help optimize crop management and farm economics? Second, what level of priority should stakeholders commit to in order to obtain these data? Before fully addressing these questions a remaining challenge is the complex nature of spatiotemporal yield variation. Here, a methodological framework is presented to separate the spatial and temporal components of crop yield variation at the subfield level. The framework can also be used to quantify the benefits of different data types on the predicted crop yield as well to better understand the connection of that data to underlying mechanisms controlling yield. Here, fine-resolution (10 m) datasets were assembled for eight 64 ha field sites, spanning a range of climatic, topographic, and soil conditions across Nebraska. Using Empirical Orthogonal Function (EOF) analysis, we found the first axis of variation contained 60–85 % of the explained variance from any particular field, thus greatly reducing the dimensionality of the problem. Using Multiple Linear Regression (MLR) and Random Forest (RF) approaches, we quantified that location within the field had the largest relative importance for modeling crop yield patterns. Secondary factors included a combination of vegetation condition, soil water content, and topography. With respect to predicting spatiotemporal crop yield patterns, we found the RF approach (prediction RMSE of 0.2−0.4 Mg/ha for maize) was superior to MLR (0.3−0.8 Mg/ha). While not directly comparable to MLR and RF the EOF approach had relatively low error (0.5–1.7 Mg/ha) and is intriguing as it requires few calibration parameters (2–6 used here) and utilizes the climate-based aridity index, allowing for pragmatic long-term predictions of subfield crop yield." @default.
- W3020595812 created "2020-05-01" @default.
- W3020595812 creator A5001595195 @default.
- W3020595812 creator A5007805588 @default.
- W3020595812 creator A5008475752 @default.
- W3020595812 creator A5009556591 @default.
- W3020595812 creator A5011762910 @default.
- W3020595812 creator A5015506248 @default.
- W3020595812 creator A5016576413 @default.
- W3020595812 creator A5030153114 @default.
- W3020595812 creator A5035529554 @default.
- W3020595812 creator A5052251787 @default.
- W3020595812 creator A5053935458 @default.
- W3020595812 creator A5066326443 @default.
- W3020595812 creator A5073370454 @default.
- W3020595812 creator A5075555774 @default.
- W3020595812 creator A5078798454 @default.
- W3020595812 date "2020-07-01" @default.
- W3020595812 modified "2023-10-16" @default.
- W3020595812 title "The role of topography, soil, and remotely sensed vegetation condition towards predicting crop yield" @default.
- W3020595812 cites W1448113274 @default.
- W3020595812 cites W1520724619 @default.
- W3020595812 cites W1594700875 @default.
- W3020595812 cites W1637117845 @default.
- W3020595812 cites W1795468129 @default.
- W3020595812 cites W1918989449 @default.
- W3020595812 cites W1965711210 @default.
- W3020595812 cites W1970819028 @default.
- W3020595812 cites W1976288972 @default.
- W3020595812 cites W1984671422 @default.
- W3020595812 cites W1986072339 @default.
- W3020595812 cites W1990655636 @default.
- W3020595812 cites W2031061820 @default.
- W3020595812 cites W2040277598 @default.
- W3020595812 cites W2041004892 @default.
- W3020595812 cites W2043153600 @default.
- W3020595812 cites W2068914580 @default.
- W3020595812 cites W2096874741 @default.
- W3020595812 cites W2097056051 @default.
- W3020595812 cites W2108034928 @default.
- W3020595812 cites W2113995684 @default.
- W3020595812 cites W2125397877 @default.
- W3020595812 cites W2126332365 @default.
- W3020595812 cites W2132334553 @default.
- W3020595812 cites W2135525724 @default.
- W3020595812 cites W2145541966 @default.
- W3020595812 cites W2149088493 @default.
- W3020595812 cites W2151010575 @default.
- W3020595812 cites W2152997368 @default.
- W3020595812 cites W2158883105 @default.
- W3020595812 cites W2159961845 @default.
- W3020595812 cites W2165588550 @default.
- W3020595812 cites W2168284104 @default.
- W3020595812 cites W2261059368 @default.
- W3020595812 cites W2290542786 @default.
- W3020595812 cites W2551220390 @default.
- W3020595812 cites W2575336938 @default.
- W3020595812 cites W2587446396 @default.
- W3020595812 cites W2588316148 @default.
- W3020595812 cites W2612890152 @default.
- W3020595812 cites W2701739730 @default.
- W3020595812 cites W2744481383 @default.
- W3020595812 cites W2763076086 @default.
- W3020595812 cites W2767273025 @default.
- W3020595812 cites W2773009449 @default.
- W3020595812 cites W2792871608 @default.
- W3020595812 cites W2793263498 @default.
- W3020595812 cites W2793603191 @default.
- W3020595812 cites W2801785495 @default.
- W3020595812 cites W2803688966 @default.
- W3020595812 cites W2805837072 @default.
- W3020595812 cites W2834155920 @default.
- W3020595812 cites W2889668950 @default.
- W3020595812 cites W2894325618 @default.
- W3020595812 cites W2903679996 @default.
- W3020595812 cites W2911964244 @default.
- W3020595812 cites W2915536774 @default.
- W3020595812 cites W2935876239 @default.
- W3020595812 cites W2943684409 @default.
- W3020595812 cites W2945365803 @default.
- W3020595812 cites W3105966447 @default.
- W3020595812 cites W3123809572 @default.
- W3020595812 doi "https://doi.org/10.1016/j.fcr.2020.107788" @default.
- W3020595812 hasPublicationYear "2020" @default.
- W3020595812 type Work @default.
- W3020595812 sameAs 3020595812 @default.
- W3020595812 citedByCount "26" @default.
- W3020595812 countsByYear W30205958122021 @default.
- W3020595812 countsByYear W30205958122022 @default.
- W3020595812 countsByYear W30205958122023 @default.
- W3020595812 crossrefType "journal-article" @default.
- W3020595812 hasAuthorship W3020595812A5001595195 @default.
- W3020595812 hasAuthorship W3020595812A5007805588 @default.
- W3020595812 hasAuthorship W3020595812A5008475752 @default.
- W3020595812 hasAuthorship W3020595812A5009556591 @default.
- W3020595812 hasAuthorship W3020595812A5011762910 @default.
- W3020595812 hasAuthorship W3020595812A5015506248 @default.
- W3020595812 hasAuthorship W3020595812A5016576413 @default.