Matches in SemOpenAlex for { <https://semopenalex.org/work/W3020646952> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W3020646952 abstract "Crime against women has become a very big problem of our nation. Many countries are trying to control this offence continuously and its prevention is an essential task. In recent years crimes are significantly increasing against women. Currently the Indian government show interest to address this problem and give more importance to develop our society. Every year a huge amount of data collection is generated on the basis of the crime reporting. This data can be very useful for assessing and predicting crime, and can help us to some degree stop the crime. Data analysis is a process of examining, cleansing, transformation and modelling data with the goal of establish useful information, reporting conclusion and sustaining decision-making. Feature Scaling is one of the most important techniques to standardize the independent features to place the data in a fixed range. It is performed at the time of data pre-processing. K-fold cross-validation is a re-sampling method used for calculating machine learning models on a small sample of data. It is a common strategy since it is easy to understand and usually results in a model deftness calculation that is less biased or less negative than other approaches, such as a simple train or test divide. Machine learning plays a large part in data processing. This paper introduces six different types of Machine learning algorithms such as KNN and decision trees, Naïve Bayes, Linear Regression CART (Classification and Regression Tree) and SVM using similar characteristics on crime data. Those algorithms are tested for accuracy. The main objective of this research is to evaluate the efficacy and application of the machine learning algorithms in data analytics." @default.
- W3020646952 created "2020-05-01" @default.
- W3020646952 creator A5057105375 @default.
- W3020646952 creator A5068873948 @default.
- W3020646952 date "2020-03-01" @default.
- W3020646952 modified "2023-09-26" @default.
- W3020646952 title "Diagnosis of Crime Rate against Women using k-fold Cross Validation through Machine Learning" @default.
- W3020646952 cites W2045432444 @default.
- W3020646952 cites W2162357792 @default.
- W3020646952 cites W2331926117 @default.
- W3020646952 cites W2775402959 @default.
- W3020646952 cites W2801334538 @default.
- W3020646952 cites W2991205472 @default.
- W3020646952 cites W84853486 @default.
- W3020646952 doi "https://doi.org/10.1109/iccmc48092.2020.iccmc-000193" @default.
- W3020646952 hasPublicationYear "2020" @default.
- W3020646952 type Work @default.
- W3020646952 sameAs 3020646952 @default.
- W3020646952 citedByCount "23" @default.
- W3020646952 countsByYear W30206469522020 @default.
- W3020646952 countsByYear W30206469522021 @default.
- W3020646952 countsByYear W30206469522022 @default.
- W3020646952 countsByYear W30206469522023 @default.
- W3020646952 crossrefType "proceedings-article" @default.
- W3020646952 hasAuthorship W3020646952A5057105375 @default.
- W3020646952 hasAuthorship W3020646952A5068873948 @default.
- W3020646952 hasConcept C119857082 @default.
- W3020646952 hasConcept C12267149 @default.
- W3020646952 hasConcept C124101348 @default.
- W3020646952 hasConcept C154945302 @default.
- W3020646952 hasConcept C169258074 @default.
- W3020646952 hasConcept C27181475 @default.
- W3020646952 hasConcept C41008148 @default.
- W3020646952 hasConcept C52001869 @default.
- W3020646952 hasConcept C75684735 @default.
- W3020646952 hasConcept C84525736 @default.
- W3020646952 hasConceptScore W3020646952C119857082 @default.
- W3020646952 hasConceptScore W3020646952C12267149 @default.
- W3020646952 hasConceptScore W3020646952C124101348 @default.
- W3020646952 hasConceptScore W3020646952C154945302 @default.
- W3020646952 hasConceptScore W3020646952C169258074 @default.
- W3020646952 hasConceptScore W3020646952C27181475 @default.
- W3020646952 hasConceptScore W3020646952C41008148 @default.
- W3020646952 hasConceptScore W3020646952C52001869 @default.
- W3020646952 hasConceptScore W3020646952C75684735 @default.
- W3020646952 hasConceptScore W3020646952C84525736 @default.
- W3020646952 hasLocation W30206469521 @default.
- W3020646952 hasOpenAccess W3020646952 @default.
- W3020646952 hasPrimaryLocation W30206469521 @default.
- W3020646952 hasRelatedWork W3127425528 @default.
- W3020646952 hasRelatedWork W3143658565 @default.
- W3020646952 hasRelatedWork W3204641204 @default.
- W3020646952 hasRelatedWork W3210877509 @default.
- W3020646952 hasRelatedWork W4205958290 @default.
- W3020646952 hasRelatedWork W4281846282 @default.
- W3020646952 hasRelatedWork W4283016678 @default.
- W3020646952 hasRelatedWork W4283836538 @default.
- W3020646952 hasRelatedWork W4307730291 @default.
- W3020646952 hasRelatedWork W4320483443 @default.
- W3020646952 isParatext "false" @default.
- W3020646952 isRetracted "false" @default.
- W3020646952 magId "3020646952" @default.
- W3020646952 workType "article" @default.