Matches in SemOpenAlex for { <https://semopenalex.org/work/W3020688514> ?p ?o ?g. }
- W3020688514 endingPage "1361" @default.
- W3020688514 startingPage "1361" @default.
- W3020688514 abstract "Identifying shallow (near-surface) groundwater in arid and hyper-arid areas has significant societal benefits, yet it is a costly operation when traditional methods (geophysics and drilling) are applied over large domains. In this study, we developed and successfully applied methodologies that rely heavily on readily available temporal, visible, and near-infrared radar and thermal remote sensing data sets and field data, as well as statistical approaches to map the distribution of shallow (1–5 m deep) groundwater occurrences in Al Qunfudah Province, Saudi Arabia, and to identify the factors controlling their development. A four-fold approach was adopted: (1) constructing a digital database to host relevant geologic, hydrogeologic, topographic, land use, climatic, and remote sensing data sets, (2) identifying the distribution of areas characterized by shallow groundwater levels, (3) developing conceptual and statistical models to map the distribution of shallow groundwater occurrences, and (4) constructing an artificial neural network (ANN) and multivariate regression (MR) models to map the distribution of shallow groundwater, test the models over areas of known depth to groundwater (area of Al Qunfudah city and surroundings: 294 km2), and apply the better of the two models to map the shallow groundwater occurrences across the entire Al Qunfudah Province (area: 4680 km2). Findings include: (1) high performance for the ANN (92%) and MR (88%) models in predicting the distribution of shallow groundwater using temporal-derived remote sensing products (e.g., normalized difference vegetation index (NDVI), radar backscatter coefficient, precipitation, and brightness temperature) and field data (depth to water table), (2) areas witnessing shallow groundwater levels show high NDVI (mean and standard deviation (STD)), radar backscatter coefficient values (mean and STD), and low brightness temperature (mean and STD) compared to their surroundings, (3) correlations of temporal groundwater levels and satellite-based precipitation suggest that the observed (2017–2019) rise in groundwater levels is related to an increase in precipitation in these years compared to the previous three years (2014–2016), and (4) the adopted methodologies are reliable, cost-effective, and could potentially be applied to identify shallow groundwater along the Red Sea Hills and in similar settings worldwide." @default.
- W3020688514 created "2020-05-01" @default.
- W3020688514 creator A5014749078 @default.
- W3020688514 creator A5017845004 @default.
- W3020688514 creator A5024686854 @default.
- W3020688514 creator A5037206527 @default.
- W3020688514 creator A5040594074 @default.
- W3020688514 creator A5049177638 @default.
- W3020688514 creator A5088857004 @default.
- W3020688514 creator A5090227286 @default.
- W3020688514 date "2020-04-25" @default.
- W3020688514 modified "2023-10-12" @default.
- W3020688514 title "Mapping the Distribution of Shallow Groundwater Occurrences Using Remote Sensing-Based Statistical Modeling over Southwest Saudi Arabia" @default.
- W3020688514 cites W1524542799 @default.
- W3020688514 cites W1531301625 @default.
- W3020688514 cites W1763321171 @default.
- W3020688514 cites W1967444754 @default.
- W3020688514 cites W1969867135 @default.
- W3020688514 cites W1971317705 @default.
- W3020688514 cites W1974655800 @default.
- W3020688514 cites W1977693209 @default.
- W3020688514 cites W1978835122 @default.
- W3020688514 cites W1980070520 @default.
- W3020688514 cites W1989994082 @default.
- W3020688514 cites W2005093197 @default.
- W3020688514 cites W2007613171 @default.
- W3020688514 cites W2023807855 @default.
- W3020688514 cites W2026590347 @default.
- W3020688514 cites W2029047761 @default.
- W3020688514 cites W2030775403 @default.
- W3020688514 cites W2036826963 @default.
- W3020688514 cites W2038145696 @default.
- W3020688514 cites W2053957903 @default.
- W3020688514 cites W2073298425 @default.
- W3020688514 cites W2082725775 @default.
- W3020688514 cites W2083270380 @default.
- W3020688514 cites W2100335098 @default.
- W3020688514 cites W2105443690 @default.
- W3020688514 cites W2112651396 @default.
- W3020688514 cites W2114526442 @default.
- W3020688514 cites W2115925418 @default.
- W3020688514 cites W2118930997 @default.
- W3020688514 cites W2119570269 @default.
- W3020688514 cites W2124383953 @default.
- W3020688514 cites W2126571256 @default.
- W3020688514 cites W2127256727 @default.
- W3020688514 cites W2130599800 @default.
- W3020688514 cites W2132360832 @default.
- W3020688514 cites W2134211714 @default.
- W3020688514 cites W2137406101 @default.
- W3020688514 cites W2140964565 @default.
- W3020688514 cites W2146904562 @default.
- W3020688514 cites W2155347783 @default.
- W3020688514 cites W2169087452 @default.
- W3020688514 cites W2194989918 @default.
- W3020688514 cites W2301921324 @default.
- W3020688514 cites W2561477190 @default.
- W3020688514 cites W2599868771 @default.
- W3020688514 cites W2766527683 @default.
- W3020688514 cites W2783216674 @default.
- W3020688514 cites W2792076794 @default.
- W3020688514 cites W2805543523 @default.
- W3020688514 cites W2912259345 @default.
- W3020688514 cites W2933437940 @default.
- W3020688514 cites W2945155373 @default.
- W3020688514 cites W2952986988 @default.
- W3020688514 cites W2985812042 @default.
- W3020688514 cites W3004750619 @default.
- W3020688514 cites W3007835987 @default.
- W3020688514 doi "https://doi.org/10.3390/rs12091361" @default.
- W3020688514 hasPublicationYear "2020" @default.
- W3020688514 type Work @default.
- W3020688514 sameAs 3020688514 @default.
- W3020688514 citedByCount "31" @default.
- W3020688514 countsByYear W30206885142020 @default.
- W3020688514 countsByYear W30206885142021 @default.
- W3020688514 countsByYear W30206885142022 @default.
- W3020688514 countsByYear W30206885142023 @default.
- W3020688514 crossrefType "journal-article" @default.
- W3020688514 hasAuthorship W3020688514A5014749078 @default.
- W3020688514 hasAuthorship W3020688514A5017845004 @default.
- W3020688514 hasAuthorship W3020688514A5024686854 @default.
- W3020688514 hasAuthorship W3020688514A5037206527 @default.
- W3020688514 hasAuthorship W3020688514A5040594074 @default.
- W3020688514 hasAuthorship W3020688514A5049177638 @default.
- W3020688514 hasAuthorship W3020688514A5088857004 @default.
- W3020688514 hasAuthorship W3020688514A5090227286 @default.
- W3020688514 hasBestOaLocation W30206885141 @default.
- W3020688514 hasConcept C111368507 @default.
- W3020688514 hasConcept C127313418 @default.
- W3020688514 hasConcept C132651083 @default.
- W3020688514 hasConcept C150772632 @default.
- W3020688514 hasConcept C151730666 @default.
- W3020688514 hasConcept C1549246 @default.
- W3020688514 hasConcept C181843262 @default.
- W3020688514 hasConcept C184149073 @default.
- W3020688514 hasConcept C187320778 @default.
- W3020688514 hasConcept C33556824 @default.