Matches in SemOpenAlex for { <https://semopenalex.org/work/W3020695909> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3020695909 endingPage "235" @default.
- W3020695909 startingPage "230" @default.
- W3020695909 abstract "Recently, artificial intelligence (AI) has been widely applied in the diagnosis and treatment of urinary diseases with the development of data storage, image processing, pattern recognition and machine learning technologies. Based on the massive biomedical big data of imaging and histopathology, many urinary system diseases (such as urinary tumor, urological calculi, urinary infection, voiding dysfunction and erectile dysfunction) will be diagnosed more accurately and will be treated more individualizedly. However, most of the current AI diagnosis and treatment are in the pre-clinical research stage, and there are still some difficulties in the wide application of AI. This review mainly summarizes the recent advances of AI in the diagnosis of prostate cancer, bladder cancer, kidney cancer, urological calculi, frequent micturition and erectile dysfunction, and discusses the future potential and existing problems.近年来,随着数据储存、图像处理、模式识别和机器学习等技术的进步,人工智能在泌尿疾病的诊疗方面得到了广泛的应用。基于影像学和组织病理学等海量的生物医学大数据,人工智能技术可以让医务工作者对泌尿系肿瘤、泌尿系结石、泌尿系感染、泌尿功能异常和勃起功能障碍等几类泌尿疾病的诊断更为精准,让治疗更加个性化。然而,目前人工智能诊疗大多处于研究阶段,在实际的应用中尚存在一些问题。本文以辅助诊断为线索,对人工智能方法在前列腺癌、膀胱癌、肾癌、尿路结石、尿频、勃起功能障碍等常见泌尿疾病的应用和研究情况予以综述,并进一步探讨其存在的问题和未来发展方向。." @default.
- W3020695909 created "2020-05-01" @default.
- W3020695909 creator A5027225142 @default.
- W3020695909 creator A5059216270 @default.
- W3020695909 date "2020-04-25" @default.
- W3020695909 modified "2023-09-23" @default.
- W3020695909 title "[Research status and trend of artificial intelligence in the diagnosis of urinary diseases]." @default.
- W3020695909 cites W1917894041 @default.
- W3020695909 cites W2007082372 @default.
- W3020695909 cites W2046727047 @default.
- W3020695909 cites W2233712039 @default.
- W3020695909 cites W2288056133 @default.
- W3020695909 cites W2503148405 @default.
- W3020695909 cites W2562490391 @default.
- W3020695909 cites W2573818714 @default.
- W3020695909 cites W2585456647 @default.
- W3020695909 cites W2589834252 @default.
- W3020695909 cites W2598379118 @default.
- W3020695909 cites W2600440778 @default.
- W3020695909 cites W2742317286 @default.
- W3020695909 cites W2765879680 @default.
- W3020695909 cites W2772577987 @default.
- W3020695909 cites W2787592746 @default.
- W3020695909 cites W2788633781 @default.
- W3020695909 cites W2790681451 @default.
- W3020695909 cites W2791170061 @default.
- W3020695909 cites W2794271098 @default.
- W3020695909 cites W2795200493 @default.
- W3020695909 cites W2806837324 @default.
- W3020695909 cites W2906295032 @default.
- W3020695909 cites W2911462778 @default.
- W3020695909 cites W2911635295 @default.
- W3020695909 cites W2946147212 @default.
- W3020695909 cites W2951078712 @default.
- W3020695909 cites W2951283193 @default.
- W3020695909 cites W2953147445 @default.
- W3020695909 cites W2964273253 @default.
- W3020695909 cites W2975662018 @default.
- W3020695909 cites W2992824173 @default.
- W3020695909 doi "https://doi.org/10.7507/1001-5515.201910055" @default.
- W3020695909 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32329274" @default.
- W3020695909 hasPublicationYear "2020" @default.
- W3020695909 type Work @default.
- W3020695909 sameAs 3020695909 @default.
- W3020695909 citedByCount "2" @default.
- W3020695909 countsByYear W30206959092021 @default.
- W3020695909 countsByYear W30206959092022 @default.
- W3020695909 crossrefType "journal-article" @default.
- W3020695909 hasAuthorship W3020695909A5027225142 @default.
- W3020695909 hasAuthorship W3020695909A5059216270 @default.
- W3020695909 hasConcept C121608353 @default.
- W3020695909 hasConcept C126322002 @default.
- W3020695909 hasConcept C126894567 @default.
- W3020695909 hasConcept C175768497 @default.
- W3020695909 hasConcept C2779929075 @default.
- W3020695909 hasConcept C2780192828 @default.
- W3020695909 hasConcept C2780352672 @default.
- W3020695909 hasConcept C2908931861 @default.
- W3020695909 hasConcept C71924100 @default.
- W3020695909 hasConcept C77411442 @default.
- W3020695909 hasConceptScore W3020695909C121608353 @default.
- W3020695909 hasConceptScore W3020695909C126322002 @default.
- W3020695909 hasConceptScore W3020695909C126894567 @default.
- W3020695909 hasConceptScore W3020695909C175768497 @default.
- W3020695909 hasConceptScore W3020695909C2779929075 @default.
- W3020695909 hasConceptScore W3020695909C2780192828 @default.
- W3020695909 hasConceptScore W3020695909C2780352672 @default.
- W3020695909 hasConceptScore W3020695909C2908931861 @default.
- W3020695909 hasConceptScore W3020695909C71924100 @default.
- W3020695909 hasConceptScore W3020695909C77411442 @default.
- W3020695909 hasIssue "2" @default.
- W3020695909 hasLocation W30206959091 @default.
- W3020695909 hasOpenAccess W3020695909 @default.
- W3020695909 hasPrimaryLocation W30206959091 @default.
- W3020695909 hasRelatedWork W2040019962 @default.
- W3020695909 hasRelatedWork W2129585940 @default.
- W3020695909 hasRelatedWork W2170959879 @default.
- W3020695909 hasRelatedWork W22995548 @default.
- W3020695909 hasRelatedWork W2802739768 @default.
- W3020695909 hasRelatedWork W2810968949 @default.
- W3020695909 hasRelatedWork W2994220471 @default.
- W3020695909 hasRelatedWork W3023293982 @default.
- W3020695909 hasRelatedWork W4240876100 @default.
- W3020695909 hasRelatedWork W4298306988 @default.
- W3020695909 hasVolume "37" @default.
- W3020695909 isParatext "false" @default.
- W3020695909 isRetracted "false" @default.
- W3020695909 magId "3020695909" @default.
- W3020695909 workType "article" @default.