Matches in SemOpenAlex for { <https://semopenalex.org/work/W3020725916> ?p ?o ?g. }
- W3020725916 abstract "Mathematical modeling of biological neuronal networks is important in order to increase understanding of the brain and develop systems capable of brain-like learning. While mathematical analysis of these comprehensive, stochastic, and complex models is intractable, and their numerical simulation is very resource intensive, mean-field modeling is an effective tool in enabling the analysis of these models. The mean-field approach allows the study of populations of biophysically detailed neurons with some assumptions of the mean behaviour of the population, but ultimately requires numerical solving of highdimensional differential equation systems. Mathematical model order reduction methods can be employed to accelerate the analysis of high-dimensional nonlinear models with a purely softwarebased approach. Here we compare state-of-the-art methods for improving the simulation time of a neuronal mean-field model and show that a nonlinear Fokker-Planck-McKean-Vlasov model can be accurately approximated in low-dimensional subspaces with these methods. Using Proper Orthogonal Decomposition and different variations of the Discrete Empirical Interpolation Method, we improved the simulation time by over three orders of magnitude while achieving low approximation error." @default.
- W3020725916 created "2020-05-01" @default.
- W3020725916 creator A5008868538 @default.
- W3020725916 creator A5045693815 @default.
- W3020725916 creator A5060683632 @default.
- W3020725916 creator A5074117710 @default.
- W3020725916 date "2020-08-01" @default.
- W3020725916 modified "2023-09-28" @default.
- W3020725916 title "Accelerated Simulation of a Neuronal Population via Mathematical Model Order Reduction" @default.
- W3020725916 cites W1633869374 @default.
- W3020725916 cites W1985983039 @default.
- W3020725916 cites W1987307696 @default.
- W3020725916 cites W1995138217 @default.
- W3020725916 cites W2005072296 @default.
- W3020725916 cites W2009375605 @default.
- W3020725916 cites W2016445007 @default.
- W3020725916 cites W2025054170 @default.
- W3020725916 cites W2027105025 @default.
- W3020725916 cites W2029010014 @default.
- W3020725916 cites W2047591100 @default.
- W3020725916 cites W2049753327 @default.
- W3020725916 cites W2054219055 @default.
- W3020725916 cites W2055613433 @default.
- W3020725916 cites W2061191702 @default.
- W3020725916 cites W2064026483 @default.
- W3020725916 cites W2075783780 @default.
- W3020725916 cites W2084259975 @default.
- W3020725916 cites W2087861759 @default.
- W3020725916 cites W2112823474 @default.
- W3020725916 cites W2117120818 @default.
- W3020725916 cites W2145749918 @default.
- W3020725916 cites W2152896489 @default.
- W3020725916 cites W2159951683 @default.
- W3020725916 cites W2342059941 @default.
- W3020725916 cites W2529004582 @default.
- W3020725916 cites W2586365766 @default.
- W3020725916 cites W2609118042 @default.
- W3020725916 cites W2801498385 @default.
- W3020725916 cites W2888919276 @default.
- W3020725916 cites W2919115771 @default.
- W3020725916 cites W2951065015 @default.
- W3020725916 cites W2951078071 @default.
- W3020725916 cites W2963684042 @default.
- W3020725916 cites W2964108177 @default.
- W3020725916 cites W3012166007 @default.
- W3020725916 cites W3104037750 @default.
- W3020725916 cites W3125004733 @default.
- W3020725916 doi "https://doi.org/10.1109/aicas48895.2020.9073844" @default.
- W3020725916 hasPublicationYear "2020" @default.
- W3020725916 type Work @default.
- W3020725916 sameAs 3020725916 @default.
- W3020725916 citedByCount "1" @default.
- W3020725916 countsByYear W30207259162022 @default.
- W3020725916 crossrefType "proceedings-article" @default.
- W3020725916 hasAuthorship W3020725916A5008868538 @default.
- W3020725916 hasAuthorship W3020725916A5045693815 @default.
- W3020725916 hasAuthorship W3020725916A5060683632 @default.
- W3020725916 hasAuthorship W3020725916A5074117710 @default.
- W3020725916 hasConcept C104114177 @default.
- W3020725916 hasConcept C105795698 @default.
- W3020725916 hasConcept C111335779 @default.
- W3020725916 hasConcept C11413529 @default.
- W3020725916 hasConcept C121332964 @default.
- W3020725916 hasConcept C126255220 @default.
- W3020725916 hasConcept C137800194 @default.
- W3020725916 hasConcept C144024400 @default.
- W3020725916 hasConcept C149923435 @default.
- W3020725916 hasConcept C154945302 @default.
- W3020725916 hasConcept C158622935 @default.
- W3020725916 hasConcept C202213908 @default.
- W3020725916 hasConcept C202444582 @default.
- W3020725916 hasConcept C2524010 @default.
- W3020725916 hasConcept C2779277453 @default.
- W3020725916 hasConcept C28826006 @default.
- W3020725916 hasConcept C2908647359 @default.
- W3020725916 hasConcept C33923547 @default.
- W3020725916 hasConcept C41008148 @default.
- W3020725916 hasConcept C57493831 @default.
- W3020725916 hasConcept C62520636 @default.
- W3020725916 hasConcept C76969082 @default.
- W3020725916 hasConcept C9652623 @default.
- W3020725916 hasConceptScore W3020725916C104114177 @default.
- W3020725916 hasConceptScore W3020725916C105795698 @default.
- W3020725916 hasConceptScore W3020725916C111335779 @default.
- W3020725916 hasConceptScore W3020725916C11413529 @default.
- W3020725916 hasConceptScore W3020725916C121332964 @default.
- W3020725916 hasConceptScore W3020725916C126255220 @default.
- W3020725916 hasConceptScore W3020725916C137800194 @default.
- W3020725916 hasConceptScore W3020725916C144024400 @default.
- W3020725916 hasConceptScore W3020725916C149923435 @default.
- W3020725916 hasConceptScore W3020725916C154945302 @default.
- W3020725916 hasConceptScore W3020725916C158622935 @default.
- W3020725916 hasConceptScore W3020725916C202213908 @default.
- W3020725916 hasConceptScore W3020725916C202444582 @default.
- W3020725916 hasConceptScore W3020725916C2524010 @default.
- W3020725916 hasConceptScore W3020725916C2779277453 @default.
- W3020725916 hasConceptScore W3020725916C28826006 @default.
- W3020725916 hasConceptScore W3020725916C2908647359 @default.
- W3020725916 hasConceptScore W3020725916C33923547 @default.
- W3020725916 hasConceptScore W3020725916C41008148 @default.