Matches in SemOpenAlex for { <https://semopenalex.org/work/W3020872732> ?p ?o ?g. }
- W3020872732 endingPage "2594" @default.
- W3020872732 startingPage "2594" @default.
- W3020872732 abstract "Accurately diagnosing sleep disorders is essential for clinical assessments and treatments. Polysomnography (PSG) has long been used for detection of various sleep disorders. In this research, electrocardiography (ECG) and electromayography (EMG) have been used for recognition of breathing and movement-related sleep disorders. Bio-signal processing has been performed by extracting EMG features exploiting entropy and statistical moments, in addition to developing an iterative pulse peak detection algorithm using synchrosqueezed wavelet transform (SSWT) for reliable extraction of heart rate and breathing-related features from ECG. A deep learning framework has been designed to incorporate EMG and ECG features. The framework has been used to classify four groups: healthy subjects, patients with obstructive sleep apnea (OSA), patients with restless leg syndrome (RLS) and patients with both OSA and RLS. The proposed deep learning framework produced a mean accuracy of 72% and weighted F1 score of 0.57 across subjects for our formulated four-class problem." @default.
- W3020872732 created "2020-05-13" @default.
- W3020872732 creator A5004587843 @default.
- W3020872732 creator A5029626997 @default.
- W3020872732 creator A5043837835 @default.
- W3020872732 creator A5065973236 @default.
- W3020872732 creator A5072240908 @default.
- W3020872732 creator A5086705584 @default.
- W3020872732 creator A5091507239 @default.
- W3020872732 date "2020-05-02" @default.
- W3020872732 modified "2023-09-26" @default.
- W3020872732 title "Recognition of Patient Groups with Sleep Related Disorders using Bio-signal Processing and Deep Learning" @default.
- W3020872732 cites W1500032766 @default.
- W3020872732 cites W1862394037 @default.
- W3020872732 cites W1926235604 @default.
- W3020872732 cites W1997713608 @default.
- W3020872732 cites W2014683958 @default.
- W3020872732 cites W2020871011 @default.
- W3020872732 cites W2066829090 @default.
- W3020872732 cites W2081986197 @default.
- W3020872732 cites W2088779313 @default.
- W3020872732 cites W2090218979 @default.
- W3020872732 cites W2099322376 @default.
- W3020872732 cites W2108691203 @default.
- W3020872732 cites W2108862792 @default.
- W3020872732 cites W2111259476 @default.
- W3020872732 cites W2134643078 @default.
- W3020872732 cites W2153635508 @default.
- W3020872732 cites W2244501064 @default.
- W3020872732 cites W2327960307 @default.
- W3020872732 cites W2333775360 @default.
- W3020872732 cites W2560785110 @default.
- W3020872732 cites W2755053692 @default.
- W3020872732 cites W2760212863 @default.
- W3020872732 cites W2782910034 @default.
- W3020872732 cites W2786689920 @default.
- W3020872732 cites W2802412756 @default.
- W3020872732 cites W2911964244 @default.
- W3020872732 cites W2942415591 @default.
- W3020872732 cites W2958908615 @default.
- W3020872732 cites W2963369735 @default.
- W3020872732 cites W2980059005 @default.
- W3020872732 cites W2993383518 @default.
- W3020872732 doi "https://doi.org/10.3390/s20092594" @default.
- W3020872732 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7248846" @default.
- W3020872732 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32370185" @default.
- W3020872732 hasPublicationYear "2020" @default.
- W3020872732 type Work @default.
- W3020872732 sameAs 3020872732 @default.
- W3020872732 citedByCount "21" @default.
- W3020872732 countsByYear W30208727322020 @default.
- W3020872732 countsByYear W30208727322021 @default.
- W3020872732 countsByYear W30208727322022 @default.
- W3020872732 countsByYear W30208727322023 @default.
- W3020872732 crossrefType "journal-article" @default.
- W3020872732 hasAuthorship W3020872732A5004587843 @default.
- W3020872732 hasAuthorship W3020872732A5029626997 @default.
- W3020872732 hasAuthorship W3020872732A5043837835 @default.
- W3020872732 hasAuthorship W3020872732A5065973236 @default.
- W3020872732 hasAuthorship W3020872732A5072240908 @default.
- W3020872732 hasAuthorship W3020872732A5086705584 @default.
- W3020872732 hasAuthorship W3020872732A5091507239 @default.
- W3020872732 hasBestOaLocation W30208727321 @default.
- W3020872732 hasConcept C104267543 @default.
- W3020872732 hasConcept C108583219 @default.
- W3020872732 hasConcept C126322002 @default.
- W3020872732 hasConcept C153180895 @default.
- W3020872732 hasConcept C154945302 @default.
- W3020872732 hasConcept C164705383 @default.
- W3020872732 hasConcept C2776006263 @default.
- W3020872732 hasConcept C2777935920 @default.
- W3020872732 hasConcept C2777953023 @default.
- W3020872732 hasConcept C2778205975 @default.
- W3020872732 hasConcept C2780040984 @default.
- W3020872732 hasConcept C2781326671 @default.
- W3020872732 hasConcept C28490314 @default.
- W3020872732 hasConcept C39300077 @default.
- W3020872732 hasConcept C41008148 @default.
- W3020872732 hasConcept C42219234 @default.
- W3020872732 hasConcept C52622490 @default.
- W3020872732 hasConcept C554190296 @default.
- W3020872732 hasConcept C71635504 @default.
- W3020872732 hasConcept C71924100 @default.
- W3020872732 hasConcept C76155785 @default.
- W3020872732 hasConcept C84393581 @default.
- W3020872732 hasConcept C99508421 @default.
- W3020872732 hasConceptScore W3020872732C104267543 @default.
- W3020872732 hasConceptScore W3020872732C108583219 @default.
- W3020872732 hasConceptScore W3020872732C126322002 @default.
- W3020872732 hasConceptScore W3020872732C153180895 @default.
- W3020872732 hasConceptScore W3020872732C154945302 @default.
- W3020872732 hasConceptScore W3020872732C164705383 @default.
- W3020872732 hasConceptScore W3020872732C2776006263 @default.
- W3020872732 hasConceptScore W3020872732C2777935920 @default.
- W3020872732 hasConceptScore W3020872732C2777953023 @default.
- W3020872732 hasConceptScore W3020872732C2778205975 @default.
- W3020872732 hasConceptScore W3020872732C2780040984 @default.
- W3020872732 hasConceptScore W3020872732C2781326671 @default.