Matches in SemOpenAlex for { <https://semopenalex.org/work/W3020922019> ?p ?o ?g. }
- W3020922019 endingPage "83212" @default.
- W3020922019 startingPage "83199" @default.
- W3020922019 abstract "Hand gesture recognition has attracted the attention of many researchers due to its wide applications in robotics, games, virtual reality, sign language and human-computer interaction. Sign language is a structured form of hand gestures and the most effective communication way among hear-impaired people. Developing an efficient sign language recognition system to recognize dynamic isolated gestures encounters three major challenges, namely, hand segmentation, hand shape feature representation and gesture sequence recognition. Traditional sign language recognition methods utilize color-based hand segmentation algorithms to segment hands, hand-crafted feature extraction for hand shape representation and Hidden Markov Model (HMM) for sequence recognition. In this paper, a novel framework is proposed for signer-independent sign language recognition using multiple deep learning architectures comprising hand semantic segmentation, hand shape feature representation and deep recurrent neural network. The recently developed semantic segmentation method called DeepLabv3+ is trained using a set of pixel-labeled hand images to extract hand regions from each frame of the input video. Then, the extracted hand regions are cropped and scaled to a fixed size to alleviate hand scale variations. Extracting hand shape features is achieved using a single layer Convolutional Self-Organizing Map (CSOM) instead of relying on transfer learning of pre-trained deep convolutional neural networks. The sequence of extracted feature vectors are then recognized using deep Bi-directional Long Short-Term Memory (BiLSTM) recurrent neural network. BiLSTM network contains three BiLSTM layers, one fully connected and softmax layers. The performance of the proposed method is evaluated using a challenging Arabic sign language database containing 23 isolated words captured from three different users. Experimental results show that the performance of proposed framework outperforms with large margin the state-of-the-art methods for signer-independent testing strategy." @default.
- W3020922019 created "2020-05-13" @default.
- W3020922019 creator A5010511301 @default.
- W3020922019 creator A5074999826 @default.
- W3020922019 date "2020-01-01" @default.
- W3020922019 modified "2023-10-07" @default.
- W3020922019 title "DeepArSLR: A Novel Signer-Independent Deep Learning Framework for Isolated Arabic Sign Language Gestures Recognition" @default.
- W3020922019 cites W1689711448 @default.
- W3020922019 cites W1903029394 @default.
- W3020922019 cites W1978543979 @default.
- W3020922019 cites W1989343489 @default.
- W3020922019 cites W199698658 @default.
- W3020922019 cites W2010886966 @default.
- W3020922019 cites W2053452236 @default.
- W3020922019 cites W2059345941 @default.
- W3020922019 cites W2064675550 @default.
- W3020922019 cites W2072096818 @default.
- W3020922019 cites W2079735306 @default.
- W3020922019 cites W2079810998 @default.
- W3020922019 cites W2098400987 @default.
- W3020922019 cites W2108598243 @default.
- W3020922019 cites W2121923445 @default.
- W3020922019 cites W2131774270 @default.
- W3020922019 cites W2133656308 @default.
- W3020922019 cites W2136848157 @default.
- W3020922019 cites W2194775991 @default.
- W3020922019 cites W2204609240 @default.
- W3020922019 cites W2318145034 @default.
- W3020922019 cites W2412782625 @default.
- W3020922019 cites W2471695703 @default.
- W3020922019 cites W2563705555 @default.
- W3020922019 cites W2588652674 @default.
- W3020922019 cites W2590076343 @default.
- W3020922019 cites W2743239999 @default.
- W3020922019 cites W2769581371 @default.
- W3020922019 cites W2827413932 @default.
- W3020922019 cites W2891726870 @default.
- W3020922019 cites W2908497602 @default.
- W3020922019 cites W2919367138 @default.
- W3020922019 cites W2921243003 @default.
- W3020922019 cites W2941870244 @default.
- W3020922019 cites W2954107718 @default.
- W3020922019 cites W2958162958 @default.
- W3020922019 cites W2962902328 @default.
- W3020922019 cites W2963738673 @default.
- W3020922019 cites W2963787550 @default.
- W3020922019 cites W2963881378 @default.
- W3020922019 cites W2964078495 @default.
- W3020922019 cites W2964291326 @default.
- W3020922019 cites W2966937616 @default.
- W3020922019 cites W2967031846 @default.
- W3020922019 cites W2969529392 @default.
- W3020922019 cites W2972281843 @default.
- W3020922019 cites W2976319257 @default.
- W3020922019 cites W2982182858 @default.
- W3020922019 cites W2990998938 @default.
- W3020922019 cites W2992144662 @default.
- W3020922019 cites W2994871227 @default.
- W3020922019 cites W2997980390 @default.
- W3020922019 cites W2998637287 @default.
- W3020922019 doi "https://doi.org/10.1109/access.2020.2990699" @default.
- W3020922019 hasPublicationYear "2020" @default.
- W3020922019 type Work @default.
- W3020922019 sameAs 3020922019 @default.
- W3020922019 citedByCount "54" @default.
- W3020922019 countsByYear W30209220192020 @default.
- W3020922019 countsByYear W30209220192021 @default.
- W3020922019 countsByYear W30209220192022 @default.
- W3020922019 countsByYear W30209220192023 @default.
- W3020922019 crossrefType "journal-article" @default.
- W3020922019 hasAuthorship W3020922019A5010511301 @default.
- W3020922019 hasAuthorship W3020922019A5074999826 @default.
- W3020922019 hasBestOaLocation W30209220191 @default.
- W3020922019 hasConcept C108583219 @default.
- W3020922019 hasConcept C138885662 @default.
- W3020922019 hasConcept C153180895 @default.
- W3020922019 hasConcept C154945302 @default.
- W3020922019 hasConcept C159437735 @default.
- W3020922019 hasConcept C188441871 @default.
- W3020922019 hasConcept C207347870 @default.
- W3020922019 hasConcept C23224414 @default.
- W3020922019 hasConcept C2776401178 @default.
- W3020922019 hasConcept C28490314 @default.
- W3020922019 hasConcept C41008148 @default.
- W3020922019 hasConcept C41895202 @default.
- W3020922019 hasConcept C522192633 @default.
- W3020922019 hasConcept C52622490 @default.
- W3020922019 hasConcept C59404180 @default.
- W3020922019 hasConcept C81363708 @default.
- W3020922019 hasConcept C89600930 @default.
- W3020922019 hasConceptScore W3020922019C108583219 @default.
- W3020922019 hasConceptScore W3020922019C138885662 @default.
- W3020922019 hasConceptScore W3020922019C153180895 @default.
- W3020922019 hasConceptScore W3020922019C154945302 @default.
- W3020922019 hasConceptScore W3020922019C159437735 @default.
- W3020922019 hasConceptScore W3020922019C188441871 @default.
- W3020922019 hasConceptScore W3020922019C207347870 @default.
- W3020922019 hasConceptScore W3020922019C23224414 @default.