Matches in SemOpenAlex for { <https://semopenalex.org/work/W3020929333> ?p ?o ?g. }
- W3020929333 endingPage "80" @default.
- W3020929333 startingPage "73" @default.
- W3020929333 abstract "In recent years, accumulating studies have shown that long non-coding RNAs (lncRNAs) not only play an important role in the regulation of various biological processes but also are the foundation for understanding mechanisms of human diseases. Due to the high cost of traditional biological experiments, the number of experimentally verified lncRNA-disease associations is very limited. Thus, many computational approaches have been proposed to discover the underlying associations between lncRNAs and diseases. However, the associations between lncRNAs and diseases are too complicated to model by using only traditional matrix factorization-based methods. In this study, we propose a hybrid computational framework (SDLDA) for the lncRNA-disease association prediction. In our computational framework, we use singular value decomposition and deep learning to extract linear and non-linear features of lncRNAs and diseases, respectively. Then we train SDLDA by combing the linear and non-linear features. Compared to previous computational methods, the combination of linear and non-linear features reinforces each other, which is better than using only either matrix factorization or deep learning. The computational results show that SDLDA has a better performance over existing methods in the leave-one-out cross-validation. Furthermore, the case studies show that 28 out of 30 cancer-related lncRNAs (10 for gastric cancer, 10 for colon cancer and 8 for renal cancer) are verified by mining recent biomedical literature. Code and data can be accessed at https://github.com/CSUBioGroup/SDLDA." @default.
- W3020929333 created "2020-05-13" @default.
- W3020929333 creator A5018365310 @default.
- W3020929333 creator A5032947862 @default.
- W3020929333 creator A5033885404 @default.
- W3020929333 creator A5058499562 @default.
- W3020929333 creator A5065367210 @default.
- W3020929333 creator A5079316675 @default.
- W3020929333 creator A5091157395 @default.
- W3020929333 date "2020-07-01" @default.
- W3020929333 modified "2023-10-02" @default.
- W3020929333 title "SDLDA: lncRNA-disease association prediction based on singular value decomposition and deep learning" @default.
- W3020929333 cites W1158178075 @default.
- W3020929333 cites W1643506206 @default.
- W3020929333 cites W1976988381 @default.
- W3020929333 cites W1986705163 @default.
- W3020929333 cites W1999008082 @default.
- W3020929333 cites W2002185065 @default.
- W3020929333 cites W2023940858 @default.
- W3020929333 cites W2045743376 @default.
- W3020929333 cites W2070777085 @default.
- W3020929333 cites W2075952448 @default.
- W3020929333 cites W2086813813 @default.
- W3020929333 cites W2087377443 @default.
- W3020929333 cites W2112001233 @default.
- W3020929333 cites W2113868616 @default.
- W3020929333 cites W2128983843 @default.
- W3020929333 cites W2151721435 @default.
- W3020929333 cites W2152311093 @default.
- W3020929333 cites W2152970345 @default.
- W3020929333 cites W2278437218 @default.
- W3020929333 cites W2317582029 @default.
- W3020929333 cites W2340796679 @default.
- W3020929333 cites W2408796111 @default.
- W3020929333 cites W2416077975 @default.
- W3020929333 cites W2507951309 @default.
- W3020929333 cites W2531500048 @default.
- W3020929333 cites W2534162070 @default.
- W3020929333 cites W2571471366 @default.
- W3020929333 cites W2572249098 @default.
- W3020929333 cites W2592863833 @default.
- W3020929333 cites W2613738093 @default.
- W3020929333 cites W2739974743 @default.
- W3020929333 cites W2740920897 @default.
- W3020929333 cites W2744067450 @default.
- W3020929333 cites W2746339161 @default.
- W3020929333 cites W2749320440 @default.
- W3020929333 cites W2770235501 @default.
- W3020929333 cites W2772618228 @default.
- W3020929333 cites W2775969337 @default.
- W3020929333 cites W2782571367 @default.
- W3020929333 cites W2793303269 @default.
- W3020929333 cites W2800840044 @default.
- W3020929333 cites W2803920401 @default.
- W3020929333 cites W2883809833 @default.
- W3020929333 cites W2903261751 @default.
- W3020929333 cites W2935275081 @default.
- W3020929333 cites W2971405760 @default.
- W3020929333 cites W2991321419 @default.
- W3020929333 cites W3004735854 @default.
- W3020929333 cites W4211130279 @default.
- W3020929333 doi "https://doi.org/10.1016/j.ymeth.2020.05.002" @default.
- W3020929333 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32387314" @default.
- W3020929333 hasPublicationYear "2020" @default.
- W3020929333 type Work @default.
- W3020929333 sameAs 3020929333 @default.
- W3020929333 citedByCount "50" @default.
- W3020929333 countsByYear W30209293332020 @default.
- W3020929333 countsByYear W30209293332021 @default.
- W3020929333 countsByYear W30209293332022 @default.
- W3020929333 countsByYear W30209293332023 @default.
- W3020929333 crossrefType "journal-article" @default.
- W3020929333 hasAuthorship W3020929333A5018365310 @default.
- W3020929333 hasAuthorship W3020929333A5032947862 @default.
- W3020929333 hasAuthorship W3020929333A5033885404 @default.
- W3020929333 hasAuthorship W3020929333A5058499562 @default.
- W3020929333 hasAuthorship W3020929333A5065367210 @default.
- W3020929333 hasAuthorship W3020929333A5079316675 @default.
- W3020929333 hasAuthorship W3020929333A5091157395 @default.
- W3020929333 hasConcept C108583219 @default.
- W3020929333 hasConcept C119857082 @default.
- W3020929333 hasConcept C121332964 @default.
- W3020929333 hasConcept C154945302 @default.
- W3020929333 hasConcept C158693339 @default.
- W3020929333 hasConcept C163175372 @default.
- W3020929333 hasConcept C22789450 @default.
- W3020929333 hasConcept C41008148 @default.
- W3020929333 hasConcept C42355184 @default.
- W3020929333 hasConcept C62520636 @default.
- W3020929333 hasConceptScore W3020929333C108583219 @default.
- W3020929333 hasConceptScore W3020929333C119857082 @default.
- W3020929333 hasConceptScore W3020929333C121332964 @default.
- W3020929333 hasConceptScore W3020929333C154945302 @default.
- W3020929333 hasConceptScore W3020929333C158693339 @default.
- W3020929333 hasConceptScore W3020929333C163175372 @default.
- W3020929333 hasConceptScore W3020929333C22789450 @default.
- W3020929333 hasConceptScore W3020929333C41008148 @default.
- W3020929333 hasConceptScore W3020929333C42355184 @default.