Matches in SemOpenAlex for { <https://semopenalex.org/work/W3020939490> ?p ?o ?g. }
- W3020939490 endingPage "87718" @default.
- W3020939490 startingPage "87695" @default.
- W3020939490 abstract "Large-scale point clouds scanned by light detection and ranging (lidar) sensors provide detailed geometric characteristics of scenes due to the provision of 3D structural data. The semantic segmentation of large-scale point clouds is a crucial step for an in-depth understanding of complex scenes. Of late, although a large number of point cloud semantic segmentation algorithms have been proposed, semantic segmentation methods are still far from being satisfactory in terms of precision and accuracy of large-scale point clouds. For machine learning (ML) and deep learning (DL) methodologies, the semantic segmentation is largely influenced by the quality of training sets and methods themselves. Therefore, we construct a new point cloud dataset, namely CSPC-Dataset (Complex Scene Point Cloud Dataset) for large-scale scene semantic segmentation. CSPC-Dataset point clouds are acquired by a wearable laser mobile mapping robot. It covers five complex urban and rural scenes and mainly includes six types of objects, i.e., ground, car, building, vegetation, bridge, and pole. It provides large-scale outdoor scenes with color information, which has advantages such as the scene more complete, point density relatively uniform, diversity and complexity of objects and the high discrepancy between different scenes. Based on the CSPC-Dataset, we construct a new benchmark, which includes approximately 68 million points with explicit semantic labels. To extend the dataset into a wide range of applications, this paper provides the semantic segmentation results and comparative analysis of 7 baseline methods based on CSPC-Dataset. In the experiment part, three groups of experiments are conducted for benchmarking, which offers an effective way to make comparisons with different point-labeling algorithms. The labeling results have shown that the highest Intersection over Union (IoU) of pole, ground, building, car, vegetation, and bridge for all benchmarks is 36.0%, 97.8%, 93.7%, 65.6%, 92.0%, and 69.6%." @default.
- W3020939490 created "2020-05-13" @default.
- W3020939490 creator A5000323161 @default.
- W3020939490 creator A5013116360 @default.
- W3020939490 creator A5035587843 @default.
- W3020939490 creator A5043794346 @default.
- W3020939490 creator A5060547743 @default.
- W3020939490 creator A5080215715 @default.
- W3020939490 date "2020-01-01" @default.
- W3020939490 modified "2023-10-17" @default.
- W3020939490 title "CSPC-Dataset: New LiDAR Point Cloud Dataset and Benchmark for Large-Scale Scene Semantic Segmentation" @default.
- W3020939490 cites W116751493 @default.
- W3020939490 cites W1644641054 @default.
- W3020939490 cites W1923184257 @default.
- W3020939490 cites W1973644502 @default.
- W3020939490 cites W1985238052 @default.
- W3020939490 cites W1986522259 @default.
- W3020939490 cites W2001014393 @default.
- W3020939490 cites W2022394120 @default.
- W3020939490 cites W2024676408 @default.
- W3020939490 cites W2027710719 @default.
- W3020939490 cites W2031489346 @default.
- W3020939490 cites W2069127380 @default.
- W3020939490 cites W2099609140 @default.
- W3020939490 cites W2108598243 @default.
- W3020939490 cites W2133916729 @default.
- W3020939490 cites W2148293384 @default.
- W3020939490 cites W2159213092 @default.
- W3020939490 cites W2194775991 @default.
- W3020939490 cites W2211722331 @default.
- W3020939490 cites W2296228853 @default.
- W3020939490 cites W2330711204 @default.
- W3020939490 cites W2374569047 @default.
- W3020939490 cites W2436494909 @default.
- W3020939490 cites W2460657278 @default.
- W3020939490 cites W2513955405 @default.
- W3020939490 cites W2556802233 @default.
- W3020939490 cites W2560609797 @default.
- W3020939490 cites W2583461717 @default.
- W3020939490 cites W2594519801 @default.
- W3020939490 cites W2594610669 @default.
- W3020939490 cites W2599022140 @default.
- W3020939490 cites W2609719703 @default.
- W3020939490 cites W2614059183 @default.
- W3020939490 cites W2620757719 @default.
- W3020939490 cites W2775216572 @default.
- W3020939490 cites W2792711004 @default.
- W3020939490 cites W2794870879 @default.
- W3020939490 cites W2800336479 @default.
- W3020939490 cites W2800466466 @default.
- W3020939490 cites W2921362487 @default.
- W3020939490 cites W2931978301 @default.
- W3020939490 cites W2946865217 @default.
- W3020939490 cites W2962731536 @default.
- W3020939490 cites W2963281829 @default.
- W3020939490 cites W2963312728 @default.
- W3020939490 cites W2963509914 @default.
- W3020939490 cites W2963706542 @default.
- W3020939490 cites W2963719584 @default.
- W3020939490 cites W2964257316 @default.
- W3020939490 cites W2990613095 @default.
- W3020939490 cites W3015648709 @default.
- W3020939490 cites W4235587621 @default.
- W3020939490 cites W4237458977 @default.
- W3020939490 doi "https://doi.org/10.1109/access.2020.2992612" @default.
- W3020939490 hasPublicationYear "2020" @default.
- W3020939490 type Work @default.
- W3020939490 sameAs 3020939490 @default.
- W3020939490 citedByCount "17" @default.
- W3020939490 countsByYear W30209394902020 @default.
- W3020939490 countsByYear W30209394902021 @default.
- W3020939490 countsByYear W30209394902022 @default.
- W3020939490 countsByYear W30209394902023 @default.
- W3020939490 crossrefType "journal-article" @default.
- W3020939490 hasAuthorship W3020939490A5000323161 @default.
- W3020939490 hasAuthorship W3020939490A5013116360 @default.
- W3020939490 hasAuthorship W3020939490A5035587843 @default.
- W3020939490 hasAuthorship W3020939490A5043794346 @default.
- W3020939490 hasAuthorship W3020939490A5060547743 @default.
- W3020939490 hasAuthorship W3020939490A5080215715 @default.
- W3020939490 hasBestOaLocation W30209394901 @default.
- W3020939490 hasConcept C115051666 @default.
- W3020939490 hasConcept C131979681 @default.
- W3020939490 hasConcept C154945302 @default.
- W3020939490 hasConcept C185798385 @default.
- W3020939490 hasConcept C199360897 @default.
- W3020939490 hasConcept C205649164 @default.
- W3020939490 hasConcept C2778755073 @default.
- W3020939490 hasConcept C2780801425 @default.
- W3020939490 hasConcept C31972630 @default.
- W3020939490 hasConcept C41008148 @default.
- W3020939490 hasConcept C51399673 @default.
- W3020939490 hasConcept C58640448 @default.
- W3020939490 hasConcept C62649853 @default.
- W3020939490 hasConcept C76155785 @default.
- W3020939490 hasConcept C89600930 @default.
- W3020939490 hasConceptScore W3020939490C115051666 @default.
- W3020939490 hasConceptScore W3020939490C131979681 @default.