Matches in SemOpenAlex for { <https://semopenalex.org/work/W3020994906> ?p ?o ?g. }
- W3020994906 endingPage "424" @default.
- W3020994906 startingPage "394" @default.
- W3020994906 abstract "Abstract Permeability is a critical parameter for evaluating unconventional shale or tight gas and oil reservoirs such as the Montney Formation in the Western Canada Sedimentary Basin. Permeability is also one of the most difficult parameters to be accurately and consistently determined in the laboratory and field as it is a second-order tensor and is dependent on many factors (e.g. test methods, sampling or testing scales, heterogeneities in fabrics, pore networks and pore-throat size distribution, transport mechanisms, pore pressure and confining stress). Although laboratory permeability measurement is limited to samples on the scale of centimeters or less, it provides valuable insights on hydrocarbon transmissibility of the reservoir matrix rock. Several methods have been developed for permeability measurements of unconventional reservoirs but each method has limitations and specific applications and often yields different permeability values even for the same sample. In this study, various permeability measurements on samples from 46 Montney wells in Alberta and British Columbia are examined. The permeability data set has primarily been obtained using transient pressure fall-off and pressure pulse-decay methods due to the relatively low permeability seen throughout the Montney Formation. A unique data set of permeability determined from canister desorption tests is also analyzed and compared to other permeability measurements. Direct permeability measurements obtained using different techniques are further compared with permeability values predicted using models based on mercury intrusion capillary pressure (MICP) data. The results show that the pressure fall-off (kpf) or GRI (kgri) permeability to helium correlates strongly with porosity. The kpf of crushed samples (20/35 meshes) ranges from 1e-3 md with porosity increasing from 3% to 13%. The pressure fall-off permeability (kpf) of plug samples is about two orders of magnitude higher than kpf of crushed samples. Pressure pulse-decay permeability (kpdp) under initial in-situ effective confining stress conditions is generally higher than the pressure fall-off permeability of crushed samples but lower than that of core plugs. Pressure pulse-decay permeability (kpdp) of visually intact samples varies over two orders of magnitude for a given porosity, which is likely a result of variable sample characteristics (e.g. with or without micro fractures, net confining stresses applied due to different sample depths and regional locations, mineralogy, amount and type of organic matter, and pore-throat size). The pulse-decay permeability of fractured samples varies widely over three orders of magnitude and is up to three orders of magnitude higher than kpdp of intact samples, indicating favorable enhancement of permeability by unpropped fractures in the Montney Formation. Out of eight MICP-based permeability models tested in this study, the Winland model (Kolodzie, 1980) and the modified Winland model by Di and Jensen (2015) predict the most comparable permeability to the pulse-decay permeability measured on intact samples, and the rest models also predict acceptable values if proper conformance and compaction corrections are done to MICP data. The permeability from these models has stronger correlations with pressure fall-off permeability measured on both intact and fractured core plugs than the other models. For the Montney Formation, the strong dependence of gas permeability on pore pressure and confining stress is also highlighted. The pore pressure and stress dependence of permeability is characterized by a modified Klinkenberg effects correction equation. Liquid permeability to decane or oil is about one order of magnitude lower than gas permeability under similar confining stresses. Variable permeability from different methods, even on the same Montney samples, underlines the limitations and specific applications of each method, and implies the strong heterogeneities in mineralogical fabrics, organic matter distribution and pore size distributions of the Montney samples. The implications of different laboratory methods for formation evaluation are further discussed, and a practical fit-for purpose approach is recommended for the measurement of permeability, which allows for a more rigorous evaluation of in-situ matrix permeability of the Montney Formation and other unconventional shale and tight reservoirs." @default.
- W3020994906 created "2020-05-13" @default.
- W3020994906 creator A5000031382 @default.
- W3020994906 creator A5036468132 @default.
- W3020994906 date "2018-06-01" @default.
- W3020994906 modified "2023-09-25" @default.
- W3020994906 title "Permeability of the Montney Formation in the Western Canada Sedimentary Basin: insights from different laboratory measurements" @default.
- W3020994906 cites W1820512088 @default.
- W3020994906 cites W1966799339 @default.
- W3020994906 cites W1968982801 @default.
- W3020994906 cites W1972914084 @default.
- W3020994906 cites W1983862412 @default.
- W3020994906 cites W1984524234 @default.
- W3020994906 cites W1987648573 @default.
- W3020994906 cites W1990424725 @default.
- W3020994906 cites W1991299203 @default.
- W3020994906 cites W1992913443 @default.
- W3020994906 cites W2001847096 @default.
- W3020994906 cites W2005919141 @default.
- W3020994906 cites W2007021286 @default.
- W3020994906 cites W2007283787 @default.
- W3020994906 cites W2011562040 @default.
- W3020994906 cites W2018407264 @default.
- W3020994906 cites W2019006773 @default.
- W3020994906 cites W2019123550 @default.
- W3020994906 cites W2019148525 @default.
- W3020994906 cites W2027065708 @default.
- W3020994906 cites W2035653130 @default.
- W3020994906 cites W2036225553 @default.
- W3020994906 cites W2036627948 @default.
- W3020994906 cites W2044559135 @default.
- W3020994906 cites W2049849727 @default.
- W3020994906 cites W2051956525 @default.
- W3020994906 cites W2056027827 @default.
- W3020994906 cites W2057715830 @default.
- W3020994906 cites W2069153185 @default.
- W3020994906 cites W2080928219 @default.
- W3020994906 cites W2081370559 @default.
- W3020994906 cites W2081561857 @default.
- W3020994906 cites W2087384240 @default.
- W3020994906 cites W2088215639 @default.
- W3020994906 cites W2092952629 @default.
- W3020994906 cites W2104708393 @default.
- W3020994906 cites W2126387283 @default.
- W3020994906 cites W2126800276 @default.
- W3020994906 cites W2137702931 @default.
- W3020994906 cites W2152133194 @default.
- W3020994906 cites W2172595117 @default.
- W3020994906 cites W2175198128 @default.
- W3020994906 cites W2254337628 @default.
- W3020994906 cites W2282915477 @default.
- W3020994906 cites W2325497625 @default.
- W3020994906 cites W2326906837 @default.
- W3020994906 cites W2339335707 @default.
- W3020994906 cites W2418608751 @default.
- W3020994906 cites W2462900278 @default.
- W3020994906 cites W2464004029 @default.
- W3020994906 cites W2493786714 @default.
- W3020994906 cites W2551195070 @default.
- W3020994906 cites W2590244303 @default.
- W3020994906 cites W2595933461 @default.
- W3020994906 cites W2596390826 @default.
- W3020994906 cites W2758664292 @default.
- W3020994906 cites W2888823815 @default.
- W3020994906 cites W29149803 @default.
- W3020994906 hasPublicationYear "2018" @default.
- W3020994906 type Work @default.
- W3020994906 sameAs 3020994906 @default.
- W3020994906 citedByCount "3" @default.
- W3020994906 countsByYear W30209949062018 @default.
- W3020994906 countsByYear W30209949062019 @default.
- W3020994906 countsByYear W30209949062020 @default.
- W3020994906 crossrefType "journal-article" @default.
- W3020994906 hasAuthorship W3020994906A5000031382 @default.
- W3020994906 hasAuthorship W3020994906A5036468132 @default.
- W3020994906 hasBestOaLocation W30209949061 @default.
- W3020994906 hasConcept C105569014 @default.
- W3020994906 hasConcept C113215200 @default.
- W3020994906 hasConcept C120882062 @default.
- W3020994906 hasConcept C127313418 @default.
- W3020994906 hasConcept C151730666 @default.
- W3020994906 hasConcept C153127940 @default.
- W3020994906 hasConcept C187320778 @default.
- W3020994906 hasConcept C196715460 @default.
- W3020994906 hasConcept C199289684 @default.
- W3020994906 hasConcept C205093917 @default.
- W3020994906 hasConcept C2777447996 @default.
- W3020994906 hasConcept C2779096232 @default.
- W3020994906 hasConcept C2781101838 @default.
- W3020994906 hasConcept C35817400 @default.
- W3020994906 hasConcept C41625074 @default.
- W3020994906 hasConcept C46293882 @default.
- W3020994906 hasConcept C48797263 @default.
- W3020994906 hasConcept C54355233 @default.
- W3020994906 hasConcept C5900021 @default.
- W3020994906 hasConcept C6648577 @default.
- W3020994906 hasConcept C78762247 @default.
- W3020994906 hasConcept C86803240 @default.