Matches in SemOpenAlex for { <https://semopenalex.org/work/W3021000557> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W3021000557 endingPage "634" @default.
- W3021000557 startingPage "634" @default.
- W3021000557 abstract "Modern industrial systems and critical infrastructures are constantly exposed to malicious cyber-attacks that are challenging and difficult to identify. Cyber-attacks can cause severe economic losses and damage the attacked system if not detected accurately and timely. Therefore, designing an accurate and sensitive intrusion detection system is undoubtedly necessary to ensure the productivity and safety of industrial systems against cyber-attacks. This paper first introduces a stacked deep learning method to detect malicious attacks in SCADA systems. We also consider eleven machine learning models, including the Xtreme Gradient Boosting (XGBoost), Random forest, Bagging, support vector machines with different kernels, classification tree pruned by the minimum cross-validation and by 1-standard error rule, linear discriminate analysis, conditional inference tree, and the C5.0 tree. Real data sets with different kinds of cyber-attacks from two laboratory-scale SCADA systems, gas pipeline and water storage tank systems, are employed to evaluate the performance of the investigated methods. Seven evaluation metrics have been used to compare the investigated models (accuracy, sensitivity, specificity, precision, recall, F1-score, and area under curve, or AUC). Overall, results show that the XGBoost approach achieved superior detection performance than all other investigated methods. This could be due to its desirable characteristics to avoid overfitting, decreases the complexity of individual trees, robustness to outliers, and invariance to scaling and monotonic transformations of the features. Unexpectedly, the deep learning models are not providing the best performance in this case study, even with their extended capacity to capture complex features interactions." @default.
- W3021000557 created "2020-05-13" @default.
- W3021000557 creator A5064811018 @default.
- W3021000557 date "2008-05-01" @default.
- W3021000557 modified "2023-10-01" @default.
- W3021000557 title "Poster 13" @default.
- W3021000557 doi "https://doi.org/10.1016/s0761-8425(08)71636-x" @default.
- W3021000557 hasPublicationYear "2008" @default.
- W3021000557 type Work @default.
- W3021000557 sameAs 3021000557 @default.
- W3021000557 citedByCount "0" @default.
- W3021000557 crossrefType "journal-article" @default.
- W3021000557 hasAuthorship W3021000557A5064811018 @default.
- W3021000557 hasConcept C104317684 @default.
- W3021000557 hasConcept C119857082 @default.
- W3021000557 hasConcept C12267149 @default.
- W3021000557 hasConcept C124101348 @default.
- W3021000557 hasConcept C154945302 @default.
- W3021000557 hasConcept C169258074 @default.
- W3021000557 hasConcept C185592680 @default.
- W3021000557 hasConcept C22019652 @default.
- W3021000557 hasConcept C35525427 @default.
- W3021000557 hasConcept C41008148 @default.
- W3021000557 hasConcept C46686674 @default.
- W3021000557 hasConcept C50644808 @default.
- W3021000557 hasConcept C55493867 @default.
- W3021000557 hasConcept C63479239 @default.
- W3021000557 hasConcept C70153297 @default.
- W3021000557 hasConceptScore W3021000557C104317684 @default.
- W3021000557 hasConceptScore W3021000557C119857082 @default.
- W3021000557 hasConceptScore W3021000557C12267149 @default.
- W3021000557 hasConceptScore W3021000557C124101348 @default.
- W3021000557 hasConceptScore W3021000557C154945302 @default.
- W3021000557 hasConceptScore W3021000557C169258074 @default.
- W3021000557 hasConceptScore W3021000557C185592680 @default.
- W3021000557 hasConceptScore W3021000557C22019652 @default.
- W3021000557 hasConceptScore W3021000557C35525427 @default.
- W3021000557 hasConceptScore W3021000557C41008148 @default.
- W3021000557 hasConceptScore W3021000557C46686674 @default.
- W3021000557 hasConceptScore W3021000557C50644808 @default.
- W3021000557 hasConceptScore W3021000557C55493867 @default.
- W3021000557 hasConceptScore W3021000557C63479239 @default.
- W3021000557 hasConceptScore W3021000557C70153297 @default.
- W3021000557 hasIssue "5" @default.
- W3021000557 hasLocation W30210005571 @default.
- W3021000557 hasOpenAccess W3021000557 @default.
- W3021000557 hasPrimaryLocation W30210005571 @default.
- W3021000557 hasRelatedWork W1996541855 @default.
- W3021000557 hasRelatedWork W2595706594 @default.
- W3021000557 hasRelatedWork W2767034401 @default.
- W3021000557 hasRelatedWork W3195168932 @default.
- W3021000557 hasRelatedWork W3200719183 @default.
- W3021000557 hasRelatedWork W4288057626 @default.
- W3021000557 hasRelatedWork W4292373754 @default.
- W3021000557 hasRelatedWork W4292387718 @default.
- W3021000557 hasRelatedWork W4293069612 @default.
- W3021000557 hasRelatedWork W4309717779 @default.
- W3021000557 hasVolume "25" @default.
- W3021000557 isParatext "false" @default.
- W3021000557 isRetracted "false" @default.
- W3021000557 magId "3021000557" @default.
- W3021000557 workType "article" @default.