Matches in SemOpenAlex for { <https://semopenalex.org/work/W3021028105> ?p ?o ?g. }
- W3021028105 endingPage "e0230599" @default.
- W3021028105 startingPage "e0230599" @default.
- W3021028105 abstract "Systems biology applies concepts from engineering in order to understand biological networks. If such an understanding was complete, biologists would be able to design ad hoc biochemical components tailored for different purposes, which is the goal of synthetic biology. Needless to say that we are far away from creating biological subsystems as intricate and precise as those found in nature, but mathematical models and high throughput techniques have brought us a long way in this direction. One of the difficulties that still needs to be overcome is finding the right values for model parameters and dealing with uncertainty, which is proving to be an extremely difficult task. In this work, we take advantage of ensemble modeling techniques, where a large number of models with different parameter values are formulated and then tested according to some performance criteria. By finding features shared by successful models, the role of different components and the synergies between them can be better understood. We will address some of the difficulties often faced by ensemble modeling approaches, such as the need to sample a space whose size grows exponentially with the number of parameters, and establishing useful selection criteria. Some methods will be shown to reduce the predictions from many models into a set of understandable design principles that can guide us to improve or manufacture a biochemical network. Our proposed framework formulates models within standard formalisms in order to integrate information from different sources and minimize the dimension of the parameter space. Additionally, the mathematical properties of the formalism enable a partition of the parameter space into independent subspaces. Each of these subspaces can be paired with a set of criteria that depend exclusively on it, thus allowing a separate sampling/screening in spaces of lower dimension. By applying tests in a strict order where computationally cheaper tests are applied first to each subspace and applying computationally expensive tests to the remaining subset thereafter, the use of resources is optimized and a larger number of models can be examined. This can be compared to a complex database query where the order of the requests can make a huge difference in the processing time. The method will be illustrated by analyzing a classical model of a metabolic pathway with end-product inhibition. Even for such a simple model, the method provides novel insight." @default.
- W3021028105 created "2020-05-13" @default.
- W3021028105 creator A5024866710 @default.
- W3021028105 creator A5040121825 @default.
- W3021028105 creator A5069381673 @default.
- W3021028105 date "2020-04-30" @default.
- W3021028105 modified "2023-10-16" @default.
- W3021028105 title "Understanding biochemical design principles with ensembles of canonical non-linear models" @default.
- W3021028105 cites W1517848764 @default.
- W3021028105 cites W1549699566 @default.
- W3021028105 cites W1554598180 @default.
- W3021028105 cites W1599969036 @default.
- W3021028105 cites W171825432 @default.
- W3021028105 cites W186688376 @default.
- W3021028105 cites W1901980741 @default.
- W3021028105 cites W1944909517 @default.
- W3021028105 cites W1971971673 @default.
- W3021028105 cites W1978486653 @default.
- W3021028105 cites W2004235182 @default.
- W3021028105 cites W2010025771 @default.
- W3021028105 cites W2012326917 @default.
- W3021028105 cites W2012600591 @default.
- W3021028105 cites W2018011810 @default.
- W3021028105 cites W2022374283 @default.
- W3021028105 cites W2034961255 @default.
- W3021028105 cites W2043004358 @default.
- W3021028105 cites W2061815181 @default.
- W3021028105 cites W2076599644 @default.
- W3021028105 cites W2078355959 @default.
- W3021028105 cites W2079764908 @default.
- W3021028105 cites W2094305273 @default.
- W3021028105 cites W2100018672 @default.
- W3021028105 cites W2114795157 @default.
- W3021028105 cites W2115710466 @default.
- W3021028105 cites W2116726967 @default.
- W3021028105 cites W2128040385 @default.
- W3021028105 cites W2130344395 @default.
- W3021028105 cites W2152540020 @default.
- W3021028105 cites W2153624566 @default.
- W3021028105 cites W2158677156 @default.
- W3021028105 cites W2161037888 @default.
- W3021028105 cites W2164898811 @default.
- W3021028105 cites W2169138639 @default.
- W3021028105 cites W2266907177 @default.
- W3021028105 cites W2297936148 @default.
- W3021028105 cites W2461742269 @default.
- W3021028105 cites W2472341275 @default.
- W3021028105 cites W2523490715 @default.
- W3021028105 cites W2561960911 @default.
- W3021028105 cites W2587775733 @default.
- W3021028105 cites W2750663427 @default.
- W3021028105 cites W2951480779 @default.
- W3021028105 cites W2963905884 @default.
- W3021028105 cites W3085746353 @default.
- W3021028105 cites W4211017114 @default.
- W3021028105 doi "https://doi.org/10.1371/journal.pone.0230599" @default.
- W3021028105 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7192416" @default.
- W3021028105 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32353072" @default.
- W3021028105 hasPublicationYear "2020" @default.
- W3021028105 type Work @default.
- W3021028105 sameAs 3021028105 @default.
- W3021028105 citedByCount "4" @default.
- W3021028105 countsByYear W30210281052020 @default.
- W3021028105 countsByYear W30210281052021 @default.
- W3021028105 crossrefType "journal-article" @default.
- W3021028105 hasAuthorship W3021028105A5024866710 @default.
- W3021028105 hasAuthorship W3021028105A5040121825 @default.
- W3021028105 hasAuthorship W3021028105A5069381673 @default.
- W3021028105 hasBestOaLocation W30210281051 @default.
- W3021028105 hasConcept C105795698 @default.
- W3021028105 hasConcept C119857082 @default.
- W3021028105 hasConcept C142362112 @default.
- W3021028105 hasConcept C152662350 @default.
- W3021028105 hasConcept C153349607 @default.
- W3021028105 hasConcept C154945302 @default.
- W3021028105 hasConcept C171018156 @default.
- W3021028105 hasConcept C177264268 @default.
- W3021028105 hasConcept C199360897 @default.
- W3021028105 hasConcept C2524010 @default.
- W3021028105 hasConcept C28225019 @default.
- W3021028105 hasConcept C33923547 @default.
- W3021028105 hasConcept C41008148 @default.
- W3021028105 hasConcept C558565934 @default.
- W3021028105 hasConcept C60644358 @default.
- W3021028105 hasConcept C73301696 @default.
- W3021028105 hasConcept C76969082 @default.
- W3021028105 hasConcept C80444323 @default.
- W3021028105 hasConcept C86803240 @default.
- W3021028105 hasConceptScore W3021028105C105795698 @default.
- W3021028105 hasConceptScore W3021028105C119857082 @default.
- W3021028105 hasConceptScore W3021028105C142362112 @default.
- W3021028105 hasConceptScore W3021028105C152662350 @default.
- W3021028105 hasConceptScore W3021028105C153349607 @default.
- W3021028105 hasConceptScore W3021028105C154945302 @default.
- W3021028105 hasConceptScore W3021028105C171018156 @default.
- W3021028105 hasConceptScore W3021028105C177264268 @default.
- W3021028105 hasConceptScore W3021028105C199360897 @default.
- W3021028105 hasConceptScore W3021028105C2524010 @default.