Matches in SemOpenAlex for { <https://semopenalex.org/work/W3021083477> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3021083477 endingPage "2734" @default.
- W3021083477 startingPage "2734" @default.
- W3021083477 abstract "Social determining factors such as the adverse influence of globalization, supermarket growth, fast unplanned urbanization, sedentary lifestyle, economy, and social position slowly develop behavioral risk factors in humans. Behavioral risk factors such as unhealthy habits, improper diet, and physical inactivity lead to physiological risks, and “obesity/overweight” is one of the consequences. “Obesity and overweight” are one of the major lifestyle diseases that leads to other health conditions, such as cardiovascular diseases (CVDs), chronic obstructive pulmonary disease (COPD), cancer, diabetes type II, hypertension, and depression. It is not restricted within the age and socio-economic background of human beings. The “World Health Organization” (WHO) has anticipated that 30% of global death will be caused by lifestyle diseases by 2030 and it can be prevented with the appropriate identification of associated risk factors and behavioral intervention plans. Health behavior change should be given priority to avoid life-threatening damages. The primary purpose of this study is not to present a risk prediction model but to provide a review of various machine learning (ML) methods and their execution using available sample health data in a public repository related to lifestyle diseases, such as obesity, CVDs, and diabetes type II. In this study, we targeted people, both male and female, in the age group of >20 and <60, excluding pregnancy and genetic factors. This paper qualifies as a tutorial article on how to use different ML methods to identify potential risk factors of obesity/overweight. Although institutions such as “Center for Disease Control and Prevention (CDC)” and “National Institute for Clinical Excellence (NICE)” guidelines work to understand the cause and consequences of overweight/obesity, we aimed to utilize the potential of data science to assess the correlated risk factors of obesity/overweight after analyzing the existing datasets available in “Kaggle” and “University of California, Irvine (UCI) database”, and to check how the potential risk factors are changing with the change in body-energy imbalance with data-visualization techniques and regression analysis. Analyzing existing obesity/overweight related data using machine learning algorithms did not produce any brand-new risk factors, but it helped us to understand: (a) how are identified risk factors related to weight change and how do we visualize it? (b) what will be the nature of the data (potential monitorable risk factors) to be collected over time to develop our intended eCoach system for the promotion of a healthy lifestyle targeting “obesity and overweight” as a study case in the future? (c) why have we used the existing “Kaggle” and “UCI” datasets for our preliminary study? (d) which classification and regression models are performing better with a corresponding limited volume of the dataset following performance metrics?" @default.
- W3021083477 created "2020-05-13" @default.
- W3021083477 creator A5063683767 @default.
- W3021083477 creator A5072191641 @default.
- W3021083477 creator A5082112611 @default.
- W3021083477 date "2020-05-11" @default.
- W3021083477 modified "2023-10-10" @default.
- W3021083477 title "Identification of Risk Factors Associated with Obesity and Overweight—A Machine Learning Overview" @default.
- W3021083477 cites W2005797591 @default.
- W3021083477 cites W2068654413 @default.
- W3021083477 cites W2083817839 @default.
- W3021083477 cites W2088106274 @default.
- W3021083477 cites W2119910794 @default.
- W3021083477 cites W2131378136 @default.
- W3021083477 cites W2506392965 @default.
- W3021083477 cites W2735376054 @default.
- W3021083477 cites W2784031884 @default.
- W3021083477 cites W2789722850 @default.
- W3021083477 cites W2896719586 @default.
- W3021083477 cites W2899203157 @default.
- W3021083477 cites W2945150131 @default.
- W3021083477 cites W2961085424 @default.
- W3021083477 cites W2971160393 @default.
- W3021083477 cites W2995420665 @default.
- W3021083477 cites W3103428102 @default.
- W3021083477 cites W4294215472 @default.
- W3021083477 doi "https://doi.org/10.3390/s20092734" @default.
- W3021083477 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7248873" @default.
- W3021083477 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32403349" @default.
- W3021083477 hasPublicationYear "2020" @default.
- W3021083477 type Work @default.
- W3021083477 sameAs 3021083477 @default.
- W3021083477 citedByCount "90" @default.
- W3021083477 countsByYear W30210834772020 @default.
- W3021083477 countsByYear W30210834772021 @default.
- W3021083477 countsByYear W30210834772022 @default.
- W3021083477 countsByYear W30210834772023 @default.
- W3021083477 crossrefType "journal-article" @default.
- W3021083477 hasAuthorship W3021083477A5063683767 @default.
- W3021083477 hasAuthorship W3021083477A5072191641 @default.
- W3021083477 hasAuthorship W3021083477A5082112611 @default.
- W3021083477 hasBestOaLocation W30210834771 @default.
- W3021083477 hasConcept C118552586 @default.
- W3021083477 hasConcept C126322002 @default.
- W3021083477 hasConcept C134018914 @default.
- W3021083477 hasConcept C138816342 @default.
- W3021083477 hasConcept C142724271 @default.
- W3021083477 hasConcept C2777180221 @default.
- W3021083477 hasConcept C2778899633 @default.
- W3021083477 hasConcept C2779134260 @default.
- W3021083477 hasConcept C2780586474 @default.
- W3021083477 hasConcept C2780665704 @default.
- W3021083477 hasConcept C50440223 @default.
- W3021083477 hasConcept C511355011 @default.
- W3021083477 hasConcept C555293320 @default.
- W3021083477 hasConcept C71924100 @default.
- W3021083477 hasConcept C74909509 @default.
- W3021083477 hasConcept C99454951 @default.
- W3021083477 hasConceptScore W3021083477C118552586 @default.
- W3021083477 hasConceptScore W3021083477C126322002 @default.
- W3021083477 hasConceptScore W3021083477C134018914 @default.
- W3021083477 hasConceptScore W3021083477C138816342 @default.
- W3021083477 hasConceptScore W3021083477C142724271 @default.
- W3021083477 hasConceptScore W3021083477C2777180221 @default.
- W3021083477 hasConceptScore W3021083477C2778899633 @default.
- W3021083477 hasConceptScore W3021083477C2779134260 @default.
- W3021083477 hasConceptScore W3021083477C2780586474 @default.
- W3021083477 hasConceptScore W3021083477C2780665704 @default.
- W3021083477 hasConceptScore W3021083477C50440223 @default.
- W3021083477 hasConceptScore W3021083477C511355011 @default.
- W3021083477 hasConceptScore W3021083477C555293320 @default.
- W3021083477 hasConceptScore W3021083477C71924100 @default.
- W3021083477 hasConceptScore W3021083477C74909509 @default.
- W3021083477 hasConceptScore W3021083477C99454951 @default.
- W3021083477 hasIssue "9" @default.
- W3021083477 hasLocation W30210834771 @default.
- W3021083477 hasLocation W30210834772 @default.
- W3021083477 hasLocation W30210834773 @default.
- W3021083477 hasLocation W30210834774 @default.
- W3021083477 hasOpenAccess W3021083477 @default.
- W3021083477 hasPrimaryLocation W30210834771 @default.
- W3021083477 hasRelatedWork W1180103556 @default.
- W3021083477 hasRelatedWork W2002094384 @default.
- W3021083477 hasRelatedWork W2083459121 @default.
- W3021083477 hasRelatedWork W2350578170 @default.
- W3021083477 hasRelatedWork W2393374061 @default.
- W3021083477 hasRelatedWork W2411416190 @default.
- W3021083477 hasRelatedWork W2989268905 @default.
- W3021083477 hasRelatedWork W4220715395 @default.
- W3021083477 hasRelatedWork W4312977099 @default.
- W3021083477 hasRelatedWork W2019851000 @default.
- W3021083477 hasVolume "20" @default.
- W3021083477 isParatext "false" @default.
- W3021083477 isRetracted "false" @default.
- W3021083477 magId "3021083477" @default.
- W3021083477 workType "article" @default.