Matches in SemOpenAlex for { <https://semopenalex.org/work/W3021086748> ?p ?o ?g. }
- W3021086748 endingPage "331" @default.
- W3021086748 startingPage "317" @default.
- W3021086748 abstract "Horseradish peroxidase (HRP) has been investigated as a catalyst to crosslink tissue-engineered hydrogels because of its mild reaction conditions and ability to modulate the mechanical properties of the matrix. Here, we report the results of the first study investigating the use of HRP to crosslink fibrin scaffolds. We examined the effect of varying HRP and hydrogen peroxide (H2O2) incorporation strategies on the resulting crosslink density and structural properties of fibrin in a microthread scaffold format. Primary (1°) and secondary (2°) scaffold modification techniques were evaluated to crosslink fibrin microthread scaffolds. A primary scaffold modification technique was defined as incorporating crosslinking agents into the microthread precursor solutions during extrusion. A secondary scaffold modification technique was defined as incubating the microthreads in a postprocessing crosslinker bath. Fibrin microthreads were enzymatically crosslinked through primary, secondary, or a combination of both approaches. All fibrin microthread scaffolds crosslinked with HRP and H2O2 via primary and/or secondary methods exhibited an increase in dityrosine crosslink density compared with uncrosslinked control microthreads, demonstrated by scaffold fluorescence. Fourier transform infrared spectroscopy indicated the formation of isodityrosine bonds in 1° HRP crosslinked microthreads. Characterization of tensile mechanical properties revealed that all HRP crosslinked microthreads were significantly stronger than control microthreads. Primary (1°) HRP crosslinked microthreads also demonstrated significantly slower degradation than control microthreads, suggesting that incorporating HRP and H2O2 during extrusion yields scaffolds with increased resistance to proteolytic degradation. Finally, cells seeded on HRP crosslinked microthreads retained a high degree of viability, demonstrating that HRP crosslinking yields biocompatible scaffolds that are suitable for tissue engineering. The goal of this work was to facilitate the logical design of enzymatically crosslinked fibrin microthreads with tunable structural properties, enabling their application for engineered tissue constructs with varied mechanical and structural properties. This study is the first to report the use of horseradish peroxidase to dityrosine crosslink a fibrin scaffold. We demonstrate the strategic engineering of fibrin microthread scaffolds with tunable biophysical properties by a facile method of varying crosslinker incorporation. The incorporation of crosslinking agents into precursor solutions during microthread extrusion was considered a primary method, whereas soaking microthreads in a postprocessing crosslinker bath was considered a secondary method. The ability to generate tunable scaffold mechanics and degradation rates will enable the application of fibrin microthreads toward the design of engineered tissues with varying architectures, mechanical properties, and functional requirements." @default.
- W3021086748 created "2020-05-13" @default.
- W3021086748 creator A5005743547 @default.
- W3021086748 creator A5013722377 @default.
- W3021086748 creator A5028911867 @default.
- W3021086748 creator A5043282100 @default.
- W3021086748 creator A5051760111 @default.
- W3021086748 creator A5088474684 @default.
- W3021086748 date "2020-06-01" @default.
- W3021086748 modified "2023-09-26" @default.
- W3021086748 title "Horseradish Peroxidase-Catalyzed Crosslinking of Fibrin Microthread Scaffolds" @default.
- W3021086748 cites W1482003625 @default.
- W3021086748 cites W1523652295 @default.
- W3021086748 cites W1862989971 @default.
- W3021086748 cites W1954387458 @default.
- W3021086748 cites W1964207157 @default.
- W3021086748 cites W1967999992 @default.
- W3021086748 cites W1968056160 @default.
- W3021086748 cites W1969878412 @default.
- W3021086748 cites W1970475663 @default.
- W3021086748 cites W1973937252 @default.
- W3021086748 cites W1976971565 @default.
- W3021086748 cites W1977234663 @default.
- W3021086748 cites W1979229962 @default.
- W3021086748 cites W1981572667 @default.
- W3021086748 cites W1986063596 @default.
- W3021086748 cites W1986823970 @default.
- W3021086748 cites W1990867240 @default.
- W3021086748 cites W1994336718 @default.
- W3021086748 cites W1995235658 @default.
- W3021086748 cites W1995489201 @default.
- W3021086748 cites W1997820185 @default.
- W3021086748 cites W2002450089 @default.
- W3021086748 cites W2004001595 @default.
- W3021086748 cites W2004013245 @default.
- W3021086748 cites W2007641965 @default.
- W3021086748 cites W2008935907 @default.
- W3021086748 cites W2011147526 @default.
- W3021086748 cites W2016331364 @default.
- W3021086748 cites W2019450369 @default.
- W3021086748 cites W2019910161 @default.
- W3021086748 cites W2021224420 @default.
- W3021086748 cites W2025958871 @default.
- W3021086748 cites W2027196389 @default.
- W3021086748 cites W2029950779 @default.
- W3021086748 cites W2032025409 @default.
- W3021086748 cites W2034683801 @default.
- W3021086748 cites W2035850750 @default.
- W3021086748 cites W2037571897 @default.
- W3021086748 cites W2041657869 @default.
- W3021086748 cites W2044308450 @default.
- W3021086748 cites W2045351675 @default.
- W3021086748 cites W2046882857 @default.
- W3021086748 cites W2050409228 @default.
- W3021086748 cites W2050559691 @default.
- W3021086748 cites W2052933416 @default.
- W3021086748 cites W2054992092 @default.
- W3021086748 cites W2057433424 @default.
- W3021086748 cites W2057951424 @default.
- W3021086748 cites W2058828060 @default.
- W3021086748 cites W2063483995 @default.
- W3021086748 cites W2067135463 @default.
- W3021086748 cites W2067321185 @default.
- W3021086748 cites W2069845168 @default.
- W3021086748 cites W2071534982 @default.
- W3021086748 cites W2072485268 @default.
- W3021086748 cites W2078132464 @default.
- W3021086748 cites W2079140603 @default.
- W3021086748 cites W2081090648 @default.
- W3021086748 cites W2081214123 @default.
- W3021086748 cites W2090504892 @default.
- W3021086748 cites W2090594920 @default.
- W3021086748 cites W2092708066 @default.
- W3021086748 cites W2103791313 @default.
- W3021086748 cites W2117954507 @default.
- W3021086748 cites W2126111746 @default.
- W3021086748 cites W2127953151 @default.
- W3021086748 cites W2133602801 @default.
- W3021086748 cites W2150295226 @default.
- W3021086748 cites W2165832011 @default.
- W3021086748 cites W2207727341 @default.
- W3021086748 cites W2280261599 @default.
- W3021086748 cites W2337150093 @default.
- W3021086748 cites W2400233641 @default.
- W3021086748 cites W2530402408 @default.
- W3021086748 cites W2557385876 @default.
- W3021086748 cites W2602087905 @default.
- W3021086748 cites W2603221202 @default.
- W3021086748 cites W2755809001 @default.
- W3021086748 cites W2802760127 @default.
- W3021086748 cites W2808455819 @default.
- W3021086748 cites W2893966693 @default.
- W3021086748 cites W2949916603 @default.
- W3021086748 cites W3001473949 @default.
- W3021086748 doi "https://doi.org/10.1089/ten.tec.2020.0083" @default.
- W3021086748 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7310227" @default.
- W3021086748 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32364015" @default.
- W3021086748 hasPublicationYear "2020" @default.