Matches in SemOpenAlex for { <https://semopenalex.org/work/W3021115501> ?p ?o ?g. }
- W3021115501 endingPage "245029" @default.
- W3021115501 startingPage "245029" @default.
- W3021115501 abstract "The purpose of this work is to develop accurate computational methods to comprehensively characterize and model the clinical ExacTrac imaging system, which is used as an image guidance system for stereotactic treatment applications. The Spektr toolkit was utilized to simulate the spectral and imaging characterization of the system. Since Spektr only simulates the primary beam (ignoring scatter), a full model of ExacTrac was also developed in Monte Carlo (MC) to characterize the imaging system. To ensure proper performance of both simulation models, Spektr and MC data were compared to the measured spectral and half value layers (HVLs) values. To validate the simulation results, x-ray spectra of the ExacTrac system were measured for various tube potentials using a CdTe spectrometer with multiple added narrow collimators. The raw spectra were calibrated using a 57Co source and corrected for the escape peaks and detector efficiency. HVLs in mm of Al for various energies were measured using a calibrated RaySafe detector. Spektr and MC HVLs were calculated and compared to the measured values. The patient surface dose was calculated for different clinical imaging protocols from the measured air kerma and HVL values following the TG-61 methodology. The x-ray focal spot was measured by slanted edge technique using gafchromic films. ExacTrac imaging system beam profiles were simulated for various energies by MC simulation and the results were benchmarked by experimentally acquired beam profiles using gafchromic films. The effect of 6D IGRT treatment couch on beam hardening, dynamic range of the flat panel detector and scatter effect were determined using both Spektr simulation and experimental measurements. The measured and simulated spectra (of both MC and Spektr) for various kVps were compared and agreed within acceptable error. As another validation, the measured HVLs agreed with the Spektr and MC simulated HVLs on average within 1.0% for all kVps. The maximum and minimum patient surface doses were found to be 1.06 mGy for shoulder (high) and 0.051 mGy for cranial (low) imaging protocols, respectively. The MC simulated beam profiles were well matched with experimental results and replicated the penumbral slopes, the heel effect, and out-of-field regions. Dynamic range of detector (in terms of air kerma at detector surface) was found to be in the range of [6.1 × 10-6, 5.3 × 10-3] mGy. Accurate MC and Spektr models of the ExacTrac image guidance system were successfully developed and benchmarked via experimental validation. While patient surface dose for available imaging protocols were reported in this study, the established MC model may be used to obtain 3D imaging dose distribution for real patient geometries." @default.
- W3021115501 created "2020-05-13" @default.
- W3021115501 creator A5010716847 @default.
- W3021115501 creator A5017906295 @default.
- W3021115501 creator A5062882166 @default.
- W3021115501 date "2020-12-17" @default.
- W3021115501 modified "2023-10-18" @default.
- W3021115501 title "Comprehensive characterization of ExacTrac stereoscopic image guidance system using Monte Carlo and Spektr simulations" @default.
- W3021115501 cites W1796107132 @default.
- W3021115501 cites W1956952722 @default.
- W3021115501 cites W1966883900 @default.
- W3021115501 cites W1967121735 @default.
- W3021115501 cites W1980325013 @default.
- W3021115501 cites W1981482453 @default.
- W3021115501 cites W1986217883 @default.
- W3021115501 cites W1986594560 @default.
- W3021115501 cites W1987294553 @default.
- W3021115501 cites W2005543036 @default.
- W3021115501 cites W2007784214 @default.
- W3021115501 cites W2008631430 @default.
- W3021115501 cites W2008755727 @default.
- W3021115501 cites W2008807735 @default.
- W3021115501 cites W2017636666 @default.
- W3021115501 cites W2027638943 @default.
- W3021115501 cites W2030255240 @default.
- W3021115501 cites W2032138177 @default.
- W3021115501 cites W2032698909 @default.
- W3021115501 cites W2038953320 @default.
- W3021115501 cites W2048841289 @default.
- W3021115501 cites W2050718666 @default.
- W3021115501 cites W2066729559 @default.
- W3021115501 cites W2068159634 @default.
- W3021115501 cites W2069814604 @default.
- W3021115501 cites W2072478167 @default.
- W3021115501 cites W2079613981 @default.
- W3021115501 cites W2082419455 @default.
- W3021115501 cites W2085254266 @default.
- W3021115501 cites W2091361931 @default.
- W3021115501 cites W2094542973 @default.
- W3021115501 cites W2095549404 @default.
- W3021115501 cites W2126089880 @default.
- W3021115501 cites W2131325511 @default.
- W3021115501 cites W2161076708 @default.
- W3021115501 cites W2171927203 @default.
- W3021115501 cites W2172632772 @default.
- W3021115501 cites W2287120084 @default.
- W3021115501 cites W2296926893 @default.
- W3021115501 cites W2298987870 @default.
- W3021115501 cites W2344601809 @default.
- W3021115501 cites W2483704245 @default.
- W3021115501 cites W2530458877 @default.
- W3021115501 cites W2570822956 @default.
- W3021115501 cites W2791087351 @default.
- W3021115501 cites W2793009084 @default.
- W3021115501 cites W2797914262 @default.
- W3021115501 cites W2945432232 @default.
- W3021115501 cites W2952945079 @default.
- W3021115501 cites W3025765847 @default.
- W3021115501 cites W4242646421 @default.
- W3021115501 cites W4251296482 @default.
- W3021115501 doi "https://doi.org/10.1088/1361-6560/ab91d8" @default.
- W3021115501 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32392546" @default.
- W3021115501 hasPublicationYear "2020" @default.
- W3021115501 type Work @default.
- W3021115501 sameAs 3021115501 @default.
- W3021115501 citedByCount "3" @default.
- W3021115501 countsByYear W30211155012021 @default.
- W3021115501 countsByYear W30211155012023 @default.
- W3021115501 crossrefType "journal-article" @default.
- W3021115501 hasAuthorship W3021115501A5010716847 @default.
- W3021115501 hasAuthorship W3021115501A5017906295 @default.
- W3021115501 hasAuthorship W3021115501A5062882166 @default.
- W3021115501 hasConcept C105795698 @default.
- W3021115501 hasConcept C120665830 @default.
- W3021115501 hasConcept C121332964 @default.
- W3021115501 hasConcept C126057942 @default.
- W3021115501 hasConcept C178639098 @default.
- W3021115501 hasConcept C192562407 @default.
- W3021115501 hasConcept C19499675 @default.
- W3021115501 hasConcept C2989005 @default.
- W3021115501 hasConcept C33923547 @default.
- W3021115501 hasConcept C71924100 @default.
- W3021115501 hasConcept C75088862 @default.
- W3021115501 hasConcept C94915269 @default.
- W3021115501 hasConceptScore W3021115501C105795698 @default.
- W3021115501 hasConceptScore W3021115501C120665830 @default.
- W3021115501 hasConceptScore W3021115501C121332964 @default.
- W3021115501 hasConceptScore W3021115501C126057942 @default.
- W3021115501 hasConceptScore W3021115501C178639098 @default.
- W3021115501 hasConceptScore W3021115501C192562407 @default.
- W3021115501 hasConceptScore W3021115501C19499675 @default.
- W3021115501 hasConceptScore W3021115501C2989005 @default.
- W3021115501 hasConceptScore W3021115501C33923547 @default.
- W3021115501 hasConceptScore W3021115501C71924100 @default.
- W3021115501 hasConceptScore W3021115501C75088862 @default.
- W3021115501 hasConceptScore W3021115501C94915269 @default.
- W3021115501 hasFunder F4320323028 @default.
- W3021115501 hasIssue "24" @default.