Matches in SemOpenAlex for { <https://semopenalex.org/work/W3021140832> ?p ?o ?g. }
- W3021140832 endingPage "e03823" @default.
- W3021140832 startingPage "e03823" @default.
- W3021140832 abstract "Due to the instinctive temperature-dependent heat capacity of the Nano-Encapsulated Phase Change Material (NEPCM), there is a growing interest in the potential applications of such materials in heat transfer. As such, steady-state natural convection in a porous enclosure saturated with nanofluid using NEPCMs has been investigated in this study. The cavity is assumed to have constant hot and cold temperatures at the left and right vertical boundaries, respectively, and fully insulated from the bottom and top walls. Considering the Local Thermal Non-equilibrium (LTNE) approach for the porous structure, the governing equations are first non-dimensionalized and then solved by employing the finite element Galerkin method. The impact of different parameters, such as porous thermal conductivity (ks ), solid-fluid interface heat transfer (10 ≤ H ≤ 105), Stefan number (0.2 ≤ Ste ≤ 1), and volume fraction of nanoparticles (0.0 ≤ φ ≤ 0.05) on the patterns of the fluid and solid isotherms, streamlines and the contours of the heat capacity ratio, fusion temperature (0.05 ≤ θf ≤ 1), local and average Nusselt numbers, and overall heat transfer ratio has been studied. It is shown that improving the porous thermal conductivity not only leads to an increase in the rate of heat transfer but also augments the fluid flow inside the cavity. For low values of the Ste, the rate of heat, transferred in the porous enclosure, is intensified. However, regardless of the amount of the Stefan number, the maximum rate of heat transfer is achievable when the non-dimensional fusion temperature is approximately 0.5. Employing NEPCMs in a highly conductive porous structure is more efficacious only when the phases are in the state of local thermal equilibrium. Nonetheless, the rate of heat transfer is higher when the Local thermal non-equilibrium is validated between the phases. Besides, for poor thermal conductivity of the porous medium like glass balls (LTE condition), adding 5% of the nano-encapsulated phase change materials to pure water can boost the rate of heat transfer up to 47% (for Ste = 0.2 and θf = 0.5). This thermal investigation of NEPCMs shows in detail how advantageous are these nanoparticles in heat transfer and opens up an avenue for further application-based studies." @default.
- W3021140832 created "2020-05-13" @default.
- W3021140832 creator A5010696489 @default.
- W3021140832 creator A5026249022 @default.
- W3021140832 creator A5060299008 @default.
- W3021140832 creator A5072907613 @default.
- W3021140832 creator A5083938769 @default.
- W3021140832 date "2020-05-01" @default.
- W3021140832 modified "2023-10-14" @default.
- W3021140832 title "Free convection of a suspension containing nano-encapsulated phase change material in a porous cavity; local thermal non-equilibrium model" @default.
- W3021140832 cites W1603751942 @default.
- W3021140832 cites W1718564008 @default.
- W3021140832 cites W1966319316 @default.
- W3021140832 cites W1971014711 @default.
- W3021140832 cites W1973386176 @default.
- W3021140832 cites W1981079945 @default.
- W3021140832 cites W1981136701 @default.
- W3021140832 cites W1995785836 @default.
- W3021140832 cites W1996902556 @default.
- W3021140832 cites W2003105834 @default.
- W3021140832 cites W2014211415 @default.
- W3021140832 cites W2022216622 @default.
- W3021140832 cites W2029343964 @default.
- W3021140832 cites W2039863338 @default.
- W3021140832 cites W2048104164 @default.
- W3021140832 cites W2059470582 @default.
- W3021140832 cites W2070301770 @default.
- W3021140832 cites W2094635102 @default.
- W3021140832 cites W2117502829 @default.
- W3021140832 cites W2140046728 @default.
- W3021140832 cites W2151080396 @default.
- W3021140832 cites W2335327880 @default.
- W3021140832 cites W2460880660 @default.
- W3021140832 cites W2475171077 @default.
- W3021140832 cites W2530588675 @default.
- W3021140832 cites W2544265968 @default.
- W3021140832 cites W2568514912 @default.
- W3021140832 cites W2582294930 @default.
- W3021140832 cites W2586119625 @default.
- W3021140832 cites W2616354302 @default.
- W3021140832 cites W2760477588 @default.
- W3021140832 cites W2764073007 @default.
- W3021140832 cites W2782510727 @default.
- W3021140832 cites W2782532714 @default.
- W3021140832 cites W2791376609 @default.
- W3021140832 cites W2797744287 @default.
- W3021140832 cites W2808662691 @default.
- W3021140832 cites W2808926426 @default.
- W3021140832 cites W2888449385 @default.
- W3021140832 cites W2895348659 @default.
- W3021140832 cites W2907061239 @default.
- W3021140832 cites W2912098227 @default.
- W3021140832 cites W2916235823 @default.
- W3021140832 cites W2921582337 @default.
- W3021140832 cites W2942807870 @default.
- W3021140832 cites W2964994405 @default.
- W3021140832 cites W2995178040 @default.
- W3021140832 doi "https://doi.org/10.1016/j.heliyon.2020.e03823" @default.
- W3021140832 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7210408" @default.
- W3021140832 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32395643" @default.
- W3021140832 hasPublicationYear "2020" @default.
- W3021140832 type Work @default.
- W3021140832 sameAs 3021140832 @default.
- W3021140832 citedByCount "19" @default.
- W3021140832 countsByYear W30211408322020 @default.
- W3021140832 countsByYear W30211408322021 @default.
- W3021140832 countsByYear W30211408322022 @default.
- W3021140832 countsByYear W30211408322023 @default.
- W3021140832 crossrefType "journal-article" @default.
- W3021140832 hasAuthorship W3021140832A5010696489 @default.
- W3021140832 hasAuthorship W3021140832A5026249022 @default.
- W3021140832 hasAuthorship W3021140832A5060299008 @default.
- W3021140832 hasAuthorship W3021140832A5072907613 @default.
- W3021140832 hasAuthorship W3021140832A5083938769 @default.
- W3021140832 hasBestOaLocation W30211408321 @default.
- W3021140832 hasConcept C105569014 @default.
- W3021140832 hasConcept C106836276 @default.
- W3021140832 hasConcept C121332964 @default.
- W3021140832 hasConcept C130230704 @default.
- W3021140832 hasConcept C159985019 @default.
- W3021140832 hasConcept C182748727 @default.
- W3021140832 hasConcept C192562407 @default.
- W3021140832 hasConcept C196558001 @default.
- W3021140832 hasConcept C21946209 @default.
- W3021140832 hasConcept C2779459783 @default.
- W3021140832 hasConcept C29700514 @default.
- W3021140832 hasConcept C37164169 @default.
- W3021140832 hasConcept C50517652 @default.
- W3021140832 hasConcept C54791560 @default.
- W3021140832 hasConcept C57879066 @default.
- W3021140832 hasConcept C60439489 @default.
- W3021140832 hasConcept C6648577 @default.
- W3021140832 hasConcept C97346530 @default.
- W3021140832 hasConcept C97355855 @default.
- W3021140832 hasConceptScore W3021140832C105569014 @default.
- W3021140832 hasConceptScore W3021140832C106836276 @default.
- W3021140832 hasConceptScore W3021140832C121332964 @default.
- W3021140832 hasConceptScore W3021140832C130230704 @default.