Matches in SemOpenAlex for { <https://semopenalex.org/work/W3021158462> ?p ?o ?g. }
- W3021158462 abstract "With the proliferation of face image manipulation (FIM) techniques such as Face2Face and Deepfake, more fake face images are spreading over the internet, which brings serious challenges to public confidence. Face image forgery detection has made considerable progresses in exposing specific FIM, but it is still in scarcity of a robust fake face detector to expose face image forgeries under complex scenarios. Due to the relatively fixed structure, convolutional neural network (CNN) tends to learn image content representations. However, CNN should learn subtle tampering artifacts for image forensics tasks. We propose an adaptive residuals extraction network (AREN), which serves as pre-processing to suppress image content and highlight tampering artifacts. AREN exploits an adaptive convolution layer to predict image residuals, which are reused in subsequent layers to maximize manipulation artifacts by updating weights during the back-propagation pass. A fake face detector, namely ARENnet, is constructed by integrating AREN with CNN. Experimental results prove that the proposed AREN achieves desirable pre-processing. When detecting fake face images generated by various FIM techniques, ARENnet achieves an average accuracy up to 98.52%, which outperforms the state-of-the-art works. When detecting face images with unknown post-processing operations, the detector also achieves an average accuracy of 95.17%." @default.
- W3021158462 created "2020-05-13" @default.
- W3021158462 creator A5044056760 @default.
- W3021158462 creator A5044689489 @default.
- W3021158462 creator A5048048449 @default.
- W3021158462 creator A5087797659 @default.
- W3021158462 date "2020-05-11" @default.
- W3021158462 modified "2023-09-27" @default.
- W3021158462 title "Fake Face Detection via Adaptive Residuals Extraction Network" @default.
- W3021158462 cites W1834627138 @default.
- W3021158462 cites W1973629749 @default.
- W3021158462 cites W1975528596 @default.
- W3021158462 cites W2009130368 @default.
- W3021158462 cites W2070484489 @default.
- W3021158462 cites W2074727269 @default.
- W3021158462 cites W2099471712 @default.
- W3021158462 cites W2106663508 @default.
- W3021158462 cites W2146502635 @default.
- W3021158462 cites W2147800946 @default.
- W3021158462 cites W2155180118 @default.
- W3021158462 cites W2194775991 @default.
- W3021158462 cites W2301937176 @default.
- W3021158462 cites W2325939864 @default.
- W3021158462 cites W2406600653 @default.
- W3021158462 cites W2531409750 @default.
- W3021158462 cites W2531817238 @default.
- W3021158462 cites W2558151185 @default.
- W3021158462 cites W2572561073 @default.
- W3021158462 cites W2603123944 @default.
- W3021158462 cites W2605195953 @default.
- W3021158462 cites W2605287558 @default.
- W3021158462 cites W2750901647 @default.
- W3021158462 cites W2753424941 @default.
- W3021158462 cites W2766527293 @default.
- W3021158462 cites W2774037436 @default.
- W3021158462 cites W2794292174 @default.
- W3021158462 cites W2794857359 @default.
- W3021158462 cites W2798117183 @default.
- W3021158462 cites W2798357659 @default.
- W3021158462 cites W2811414481 @default.
- W3021158462 cites W2883861033 @default.
- W3021158462 cites W2884581909 @default.
- W3021158462 cites W2886867359 @default.
- W3021158462 cites W2888519208 @default.
- W3021158462 cites W2902304528 @default.
- W3021158462 cites W2904336702 @default.
- W3021158462 cites W2904573504 @default.
- W3021158462 cites W2909336075 @default.
- W3021158462 cites W2911424785 @default.
- W3021158462 cites W2911434503 @default.
- W3021158462 cites W2912336782 @default.
- W3021158462 cites W2913399670 @default.
- W3021158462 cites W2914447220 @default.
- W3021158462 cites W2916006017 @default.
- W3021158462 cites W2921416006 @default.
- W3021158462 cites W2925898012 @default.
- W3021158462 cites W2935149615 @default.
- W3021158462 cites W2942074357 @default.
- W3021158462 cites W2943520232 @default.
- W3021158462 cites W2945361107 @default.
- W3021158462 cites W2949117887 @default.
- W3021158462 cites W2949660100 @default.
- W3021158462 cites W2950094539 @default.
- W3021158462 cites W2953052022 @default.
- W3021158462 cites W2953335716 @default.
- W3021158462 cites W2962770929 @default.
- W3021158462 cites W2962835968 @default.
- W3021158462 cites W2962958939 @default.
- W3021158462 cites W2963120057 @default.
- W3021158462 cites W2963446712 @default.
- W3021158462 cites W2963684088 @default.
- W3021158462 cites W2963684180 @default.
- W3021158462 cites W2963720850 @default.
- W3021158462 cites W2964154124 @default.
- W3021158462 cites W2970952463 @default.
- W3021158462 cites W2971144153 @default.
- W3021158462 cites W2979980060 @default.
- W3021158462 cites W2980459401 @default.
- W3021158462 cites W2991318208 @default.
- W3021158462 cites W2997520009 @default.
- W3021158462 cites W3034196597 @default.
- W3021158462 cites W3035063907 @default.
- W3021158462 hasPublicationYear "2020" @default.
- W3021158462 type Work @default.
- W3021158462 sameAs 3021158462 @default.
- W3021158462 citedByCount "2" @default.
- W3021158462 countsByYear W30211584622020 @default.
- W3021158462 countsByYear W30211584622021 @default.
- W3021158462 crossrefType "posted-content" @default.
- W3021158462 hasAuthorship W3021158462A5044056760 @default.
- W3021158462 hasAuthorship W3021158462A5044689489 @default.
- W3021158462 hasAuthorship W3021158462A5048048449 @default.
- W3021158462 hasAuthorship W3021158462A5087797659 @default.
- W3021158462 hasConcept C115961682 @default.
- W3021158462 hasConcept C144024400 @default.
- W3021158462 hasConcept C153180895 @default.
- W3021158462 hasConcept C154945302 @default.
- W3021158462 hasConcept C165696696 @default.
- W3021158462 hasConcept C2779304628 @default.
- W3021158462 hasConcept C31510193 @default.