Matches in SemOpenAlex for { <https://semopenalex.org/work/W3021329414> ?p ?o ?g. }
- W3021329414 abstract "Abstract With the advancement of machine learning in leading technologies, it is perceived that machine learning is a new and effective alternative for the classic fatigue life prediction. This paper provides a regression tree ensemble‐based machine learning approach to predict the fatigue life of GLARE composites. In the model, mechanical, geometrical properties and fatigue loading stresses are selected as the training parameters (so‐called features), and the GLARE fatigue life is predicted as the output of the model. Experimental data of a total of 98 pieces of GLARE specimens with nine different layups are used for the training and validation of the machine learning model. Results show that the model can provide good fatigue life prediction accuracy and model stability. The most correlated, either positively or negatively, parameters to the fatigue life span are the stress developed in the aluminum layer, the maximum cyclic stress, alternating stress, and mean fatigue stress." @default.
- W3021329414 created "2020-05-13" @default.
- W3021329414 creator A5017506699 @default.
- W3021329414 creator A5039636803 @default.
- W3021329414 creator A5068251217 @default.
- W3021329414 date "2020-05-05" @default.
- W3021329414 modified "2023-10-18" @default.
- W3021329414 title "Fatigue Life Prediction of GLARE Composites Using Regression Tree Ensemble‐Based Machine Learning Model" @default.
- W3021329414 cites W115894563 @default.
- W3021329414 cites W1901616594 @default.
- W3021329414 cites W1965555277 @default.
- W3021329414 cites W1984989594 @default.
- W3021329414 cites W1987426989 @default.
- W3021329414 cites W1994540559 @default.
- W3021329414 cites W1996423914 @default.
- W3021329414 cites W1997130960 @default.
- W3021329414 cites W1997346994 @default.
- W3021329414 cites W2013040934 @default.
- W3021329414 cites W2015347689 @default.
- W3021329414 cites W2035137107 @default.
- W3021329414 cites W2036709418 @default.
- W3021329414 cites W2071299753 @default.
- W3021329414 cites W2071421711 @default.
- W3021329414 cites W2074375273 @default.
- W3021329414 cites W2087378674 @default.
- W3021329414 cites W2093728256 @default.
- W3021329414 cites W2093762370 @default.
- W3021329414 cites W2125671785 @default.
- W3021329414 cites W2155294518 @default.
- W3021329414 cites W2326568258 @default.
- W3021329414 cites W2482939998 @default.
- W3021329414 cites W2545130142 @default.
- W3021329414 cites W2556851635 @default.
- W3021329414 cites W2614293472 @default.
- W3021329414 cites W2725481508 @default.
- W3021329414 cites W2742638142 @default.
- W3021329414 cites W2745485339 @default.
- W3021329414 cites W2795411881 @default.
- W3021329414 cites W2800756109 @default.
- W3021329414 cites W2886962219 @default.
- W3021329414 cites W2888266037 @default.
- W3021329414 cites W2912458815 @default.
- W3021329414 cites W2923052517 @default.
- W3021329414 cites W2968782914 @default.
- W3021329414 cites W2995012791 @default.
- W3021329414 cites W2999139758 @default.
- W3021329414 cites W2999398113 @default.
- W3021329414 cites W3004286518 @default.
- W3021329414 cites W3102476541 @default.
- W3021329414 cites W4212863985 @default.
- W3021329414 cites W4244210292 @default.
- W3021329414 doi "https://doi.org/10.1002/adts.202000048" @default.
- W3021329414 hasPublicationYear "2020" @default.
- W3021329414 type Work @default.
- W3021329414 sameAs 3021329414 @default.
- W3021329414 citedByCount "14" @default.
- W3021329414 countsByYear W30213294142020 @default.
- W3021329414 countsByYear W30213294142021 @default.
- W3021329414 countsByYear W30213294142022 @default.
- W3021329414 countsByYear W30213294142023 @default.
- W3021329414 crossrefType "journal-article" @default.
- W3021329414 hasAuthorship W3021329414A5017506699 @default.
- W3021329414 hasAuthorship W3021329414A5039636803 @default.
- W3021329414 hasAuthorship W3021329414A5068251217 @default.
- W3021329414 hasConcept C112972136 @default.
- W3021329414 hasConcept C119857082 @default.
- W3021329414 hasConcept C127413603 @default.
- W3021329414 hasConcept C138885662 @default.
- W3021329414 hasConcept C152877465 @default.
- W3021329414 hasConcept C154945302 @default.
- W3021329414 hasConcept C159985019 @default.
- W3021329414 hasConcept C192562407 @default.
- W3021329414 hasConcept C194130854 @default.
- W3021329414 hasConcept C21036866 @default.
- W3021329414 hasConcept C2779227376 @default.
- W3021329414 hasConcept C41008148 @default.
- W3021329414 hasConcept C41895202 @default.
- W3021329414 hasConcept C45942800 @default.
- W3021329414 hasConcept C66938386 @default.
- W3021329414 hasConceptScore W3021329414C112972136 @default.
- W3021329414 hasConceptScore W3021329414C119857082 @default.
- W3021329414 hasConceptScore W3021329414C127413603 @default.
- W3021329414 hasConceptScore W3021329414C138885662 @default.
- W3021329414 hasConceptScore W3021329414C152877465 @default.
- W3021329414 hasConceptScore W3021329414C154945302 @default.
- W3021329414 hasConceptScore W3021329414C159985019 @default.
- W3021329414 hasConceptScore W3021329414C192562407 @default.
- W3021329414 hasConceptScore W3021329414C194130854 @default.
- W3021329414 hasConceptScore W3021329414C21036866 @default.
- W3021329414 hasConceptScore W3021329414C2779227376 @default.
- W3021329414 hasConceptScore W3021329414C41008148 @default.
- W3021329414 hasConceptScore W3021329414C41895202 @default.
- W3021329414 hasConceptScore W3021329414C45942800 @default.
- W3021329414 hasConceptScore W3021329414C66938386 @default.
- W3021329414 hasFunder F4320320766 @default.
- W3021329414 hasFunder F4320335158 @default.
- W3021329414 hasIssue "6" @default.
- W3021329414 hasLocation W30213294141 @default.
- W3021329414 hasOpenAccess W3021329414 @default.
- W3021329414 hasPrimaryLocation W30213294141 @default.