Matches in SemOpenAlex for { <https://semopenalex.org/work/W3021346643> ?p ?o ?g. }
- W3021346643 endingPage "E510" @default.
- W3021346643 startingPage "E500" @default.
- W3021346643 abstract "Unplanned hospital readmissions constitute a significant cost burden in healthcare. Identifying factors contributing to readmission risk presents opportunities for actionable change to reduce readmission rates.To combine machine learning classification and feature importance analysis to identify drivers of readmission in a large cohort of spine patients.Cases involving surgical procedures for degenerative spine conditions between 2008 and 2016 were retrospectively reviewed. Of 11 150 cases, 396 patients (3.6%) experienced an unplanned hospital readmission within 30 d of discharge. Over 75 pre-discharge variables were collected and categorized into demographic, perioperative, and resource utilization feature domains. Random forest classification was used to construct predictive models for readmission from feature domains. An ensemble tree-specific method was used to quantify and rank features by relative importance.In the demographics domain, age and comorbidity burden were the most important features for readmission prediction. Surgical duration and intraoperative oral morphine equivalents were the most important perioperative features, whereas total direct cost and length of stay were most important in the resource utilization domain. In supervised learning experiments for predicting readmission, the demographic domain model performed the best alone, suggesting that demographic features may contribute more to readmission risk than perioperative variables following spine surgery. A predictive model, created using only enriched features showing substantial importance, demonstrated improved predictive capacity compared to previous models, and approached the performance of state-of-the-art, deep-learning models for readmission.This strategy provides insight into global patterns of feature importance and better understanding of drivers of readmissions following spine surgery." @default.
- W3021346643 created "2020-05-13" @default.
- W3021346643 creator A5015239361 @default.
- W3021346643 creator A5035243691 @default.
- W3021346643 creator A5046487990 @default.
- W3021346643 creator A5048580400 @default.
- W3021346643 creator A5060570681 @default.
- W3021346643 creator A5070167718 @default.
- W3021346643 creator A5084071931 @default.
- W3021346643 date "2020-05-11" @default.
- W3021346643 modified "2023-09-27" @default.
- W3021346643 title "Machine Learning With Feature Domains Elucidates Candidate Drivers of Hospital Readmission Following Spine Surgery in a Large Single-Center Patient Cohort" @default.
- W3021346643 cites W1801795367 @default.
- W3021346643 cites W1992292319 @default.
- W3021346643 cites W2030750671 @default.
- W3021346643 cites W2045030413 @default.
- W3021346643 cites W2057780602 @default.
- W3021346643 cites W2059352745 @default.
- W3021346643 cites W2061363465 @default.
- W3021346643 cites W2068800358 @default.
- W3021346643 cites W2164911642 @default.
- W3021346643 cites W2183097406 @default.
- W3021346643 cites W2294189206 @default.
- W3021346643 cites W2325299648 @default.
- W3021346643 cites W2329275100 @default.
- W3021346643 cites W2465057711 @default.
- W3021346643 cites W2472387529 @default.
- W3021346643 cites W2475631053 @default.
- W3021346643 cites W2509083862 @default.
- W3021346643 cites W2544056108 @default.
- W3021346643 cites W2594867850 @default.
- W3021346643 cites W2605892817 @default.
- W3021346643 cites W2612176626 @default.
- W3021346643 cites W2729658366 @default.
- W3021346643 cites W2762122369 @default.
- W3021346643 cites W2771030634 @default.
- W3021346643 cites W2782021222 @default.
- W3021346643 cites W2807390355 @default.
- W3021346643 cites W2807507691 @default.
- W3021346643 cites W2808671198 @default.
- W3021346643 cites W2883029881 @default.
- W3021346643 cites W2905951279 @default.
- W3021346643 cites W2908201961 @default.
- W3021346643 cites W2911964244 @default.
- W3021346643 cites W2917605654 @default.
- W3021346643 cites W2917832091 @default.
- W3021346643 cites W2936186970 @default.
- W3021346643 cites W2938383606 @default.
- W3021346643 cites W2946787119 @default.
- W3021346643 cites W2947822512 @default.
- W3021346643 cites W2954580138 @default.
- W3021346643 cites W2963650911 @default.
- W3021346643 cites W2971585120 @default.
- W3021346643 cites W3098949126 @default.
- W3021346643 doi "https://doi.org/10.1093/neuros/nyaa136" @default.
- W3021346643 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32392339" @default.
- W3021346643 hasPublicationYear "2020" @default.
- W3021346643 type Work @default.
- W3021346643 sameAs 3021346643 @default.
- W3021346643 citedByCount "8" @default.
- W3021346643 countsByYear W30213466432020 @default.
- W3021346643 countsByYear W30213466432021 @default.
- W3021346643 countsByYear W30213466432022 @default.
- W3021346643 countsByYear W30213466432023 @default.
- W3021346643 crossrefType "journal-article" @default.
- W3021346643 hasAuthorship W3021346643A5015239361 @default.
- W3021346643 hasAuthorship W3021346643A5035243691 @default.
- W3021346643 hasAuthorship W3021346643A5046487990 @default.
- W3021346643 hasAuthorship W3021346643A5048580400 @default.
- W3021346643 hasAuthorship W3021346643A5060570681 @default.
- W3021346643 hasAuthorship W3021346643A5070167718 @default.
- W3021346643 hasAuthorship W3021346643A5084071931 @default.
- W3021346643 hasConcept C119857082 @default.
- W3021346643 hasConcept C126322002 @default.
- W3021346643 hasConcept C138885662 @default.
- W3021346643 hasConcept C141071460 @default.
- W3021346643 hasConcept C154945302 @default.
- W3021346643 hasConcept C169258074 @default.
- W3021346643 hasConcept C194828623 @default.
- W3021346643 hasConcept C2776401178 @default.
- W3021346643 hasConcept C31174226 @default.
- W3021346643 hasConcept C41008148 @default.
- W3021346643 hasConcept C41895202 @default.
- W3021346643 hasConcept C71924100 @default.
- W3021346643 hasConcept C72563966 @default.
- W3021346643 hasConceptScore W3021346643C119857082 @default.
- W3021346643 hasConceptScore W3021346643C126322002 @default.
- W3021346643 hasConceptScore W3021346643C138885662 @default.
- W3021346643 hasConceptScore W3021346643C141071460 @default.
- W3021346643 hasConceptScore W3021346643C154945302 @default.
- W3021346643 hasConceptScore W3021346643C169258074 @default.
- W3021346643 hasConceptScore W3021346643C194828623 @default.
- W3021346643 hasConceptScore W3021346643C2776401178 @default.
- W3021346643 hasConceptScore W3021346643C31174226 @default.
- W3021346643 hasConceptScore W3021346643C41008148 @default.
- W3021346643 hasConceptScore W3021346643C41895202 @default.
- W3021346643 hasConceptScore W3021346643C71924100 @default.
- W3021346643 hasConceptScore W3021346643C72563966 @default.