Matches in SemOpenAlex for { <https://semopenalex.org/work/W3021399744> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W3021399744 endingPage "103" @default.
- W3021399744 startingPage "95" @default.
- W3021399744 abstract "Abstract One of the key issues in automatic shift control of V-type cyclical loaders is determining how to find the best gear for the current conditions according to a certain mapping relation, but this complex and nonlinear mapping is difficult to express by a mathematical relation. However, to solve such nonlinear problems, a radial basis function (RBF) neural network is the best choice. In this paper, a certain type of wheel loader is taken as the research object, and an RBF neural network algorithm based on an improved genetic algorithm (GA) optimization is proposed. The global search ability of the GA is improved by adaptively adjusting the crossover probability and mutation probability. The RBF neural network expansion coefficient is optimized by an improved GA. Using industrial IOT technology, an optimized RBF neural network based on Map-Reduce on a cloud computing cluster is designed. The diesel engine computer and transmission computer on the loader are integrated to achieve dual-processor distributed parallel data processing and calculation. Then the loader automatic variable speed control algorithm model of improved GA optimized RBF neural network based on IOT cloud computing is established. The network model is trained and simulated using real vehicle automatic shift test data. The simulation results show that the improved GA-RBF neural network algorithm can achieve a correct recognition rate of 97.92%. The error matrix norm reaches the minimum value when the algorithm is iterated to the 17th generation. The improved algorithm has the advantages of a high gear recognition rate, fast convergence speed and strong real-time shift performance and is an effective new shift control method. The test results show that the shift boost time is less than 0.15 s and has a certain gradient. Compared with the manual shift process performed in the past, some improvements are achieved in the optimal shift time, shift response speed and shift quality. Compared with the traditional single computer based on serial training RBF neural network learning algorithm, whether it is Great progress has been made in convergence speed, training time, recognition rate, and data processing capabilities. Through the simulation and test, the validity of the intelligent shift control method of the improved GA optimized RBF neural network based on IOT cloud computing is verified. It has better engineering application value." @default.
- W3021399744 created "2020-05-13" @default.
- W3021399744 creator A5056417185 @default.
- W3021399744 creator A5064308743 @default.
- W3021399744 creator A5066501164 @default.
- W3021399744 creator A5073421267 @default.
- W3021399744 date "2020-05-01" @default.
- W3021399744 modified "2023-09-27" @default.
- W3021399744 title "IOT and cloud computing based parallel implementation of optimized RBF neural network for loader automatic shift control" @default.
- W3021399744 cites W1930745050 @default.
- W3021399744 cites W1969674508 @default.
- W3021399744 cites W1991157172 @default.
- W3021399744 cites W2017007795 @default.
- W3021399744 cites W2028000151 @default.
- W3021399744 cites W2036224037 @default.
- W3021399744 cites W2051152418 @default.
- W3021399744 cites W2067878879 @default.
- W3021399744 cites W2077458446 @default.
- W3021399744 cites W2550428276 @default.
- W3021399744 cites W2571853538 @default.
- W3021399744 cites W96511100 @default.
- W3021399744 doi "https://doi.org/10.1016/j.comcom.2020.04.053" @default.
- W3021399744 hasPublicationYear "2020" @default.
- W3021399744 type Work @default.
- W3021399744 sameAs 3021399744 @default.
- W3021399744 citedByCount "6" @default.
- W3021399744 countsByYear W30213997442021 @default.
- W3021399744 countsByYear W30213997442022 @default.
- W3021399744 countsByYear W30213997442023 @default.
- W3021399744 crossrefType "journal-article" @default.
- W3021399744 hasAuthorship W3021399744A5056417185 @default.
- W3021399744 hasAuthorship W3021399744A5064308743 @default.
- W3021399744 hasAuthorship W3021399744A5066501164 @default.
- W3021399744 hasAuthorship W3021399744A5073421267 @default.
- W3021399744 hasConcept C111919701 @default.
- W3021399744 hasConcept C149635348 @default.
- W3021399744 hasConcept C154945302 @default.
- W3021399744 hasConcept C2779041774 @default.
- W3021399744 hasConcept C41008148 @default.
- W3021399744 hasConcept C50644808 @default.
- W3021399744 hasConcept C79974875 @default.
- W3021399744 hasConceptScore W3021399744C111919701 @default.
- W3021399744 hasConceptScore W3021399744C149635348 @default.
- W3021399744 hasConceptScore W3021399744C154945302 @default.
- W3021399744 hasConceptScore W3021399744C2779041774 @default.
- W3021399744 hasConceptScore W3021399744C41008148 @default.
- W3021399744 hasConceptScore W3021399744C50644808 @default.
- W3021399744 hasConceptScore W3021399744C79974875 @default.
- W3021399744 hasFunder F4320326270 @default.
- W3021399744 hasLocation W30213997441 @default.
- W3021399744 hasOpenAccess W3021399744 @default.
- W3021399744 hasPrimaryLocation W30213997441 @default.
- W3021399744 hasRelatedWork W2048509577 @default.
- W3021399744 hasRelatedWork W2354946875 @default.
- W3021399744 hasRelatedWork W2368122336 @default.
- W3021399744 hasRelatedWork W2379607700 @default.
- W3021399744 hasRelatedWork W2383532021 @default.
- W3021399744 hasRelatedWork W2386387936 @default.
- W3021399744 hasRelatedWork W3021399744 @default.
- W3021399744 hasRelatedWork W3107474891 @default.
- W3021399744 hasRelatedWork W4240296847 @default.
- W3021399744 hasRelatedWork W66215314 @default.
- W3021399744 hasVolume "158" @default.
- W3021399744 isParatext "false" @default.
- W3021399744 isRetracted "false" @default.
- W3021399744 magId "3021399744" @default.
- W3021399744 workType "article" @default.