Matches in SemOpenAlex for { <https://semopenalex.org/work/W3021441291> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W3021441291 abstract "We consider a time series model with autoregressive conditional heteroskedasticity that is subject to changes in regime. The regimes evolve according to a multistate latent Markov switching process with unknown transition probabilities, and it is the constant in the variance process of the innovations that is subject to regime shifts. The joint estimation of the latent process and all model parameters is performed within a Bayesian framework using the method of Markov Chain Monte Carlo simulation. One iteration of the sampler involves first a multi-move step to simulate the latent process out of its conditional distribution. The Gibbs sampler can then be used to simulate the parameters, in particular the transition probabilities, for which the full conditional posterior distribution is known. For most parameters, however, the full conditionals do not belong to any well-known family of distributions. The simulations are then based on the Metropolis-Hastings algorithm with carefully chosen proposal densities. We perform model selection with respect to the number of states and the number of autoregressive parameters in the variance process using Bayes factors and model likelihoods. To this aim, the model likelihood is estimated by combining the candidate's formula with importance sampling. The usefulness of the sampler is demonstrated by applying it to the dataset previously used by Hamilton and Susmel who investigated models with switching autoregressive conditional heteroskedasticity using maximum likelihood methods. The paper concludes with some issues related to maximum likelihood methods, to classical model selection, and to potential straightforward extensions of the model presented here." @default.
- W3021441291 created "2020-05-13" @default.
- W3021441291 creator A5036410166 @default.
- W3021441291 creator A5090370596 @default.
- W3021441291 date "2000-08-01" @default.
- W3021441291 modified "2023-09-27" @default.
- W3021441291 title "Bayesian Analysis of Switching ARCH Models" @default.
- W3021441291 hasPublicationYear "2000" @default.
- W3021441291 type Work @default.
- W3021441291 sameAs 3021441291 @default.
- W3021441291 citedByCount "0" @default.
- W3021441291 crossrefType "posted-content" @default.
- W3021441291 hasAuthorship W3021441291A5036410166 @default.
- W3021441291 hasAuthorship W3021441291A5090370596 @default.
- W3021441291 hasConcept C101104100 @default.
- W3021441291 hasConcept C105795698 @default.
- W3021441291 hasConcept C107673813 @default.
- W3021441291 hasConcept C111350023 @default.
- W3021441291 hasConcept C142291917 @default.
- W3021441291 hasConcept C149782125 @default.
- W3021441291 hasConcept C158424031 @default.
- W3021441291 hasConcept C159877910 @default.
- W3021441291 hasConcept C160234255 @default.
- W3021441291 hasConcept C177769412 @default.
- W3021441291 hasConcept C21430997 @default.
- W3021441291 hasConcept C23922673 @default.
- W3021441291 hasConcept C33923547 @default.
- W3021441291 hasConcept C43555835 @default.
- W3021441291 hasConcept C57830394 @default.
- W3021441291 hasConcept C91602232 @default.
- W3021441291 hasConcept C93959086 @default.
- W3021441291 hasConcept C98763669 @default.
- W3021441291 hasConceptScore W3021441291C101104100 @default.
- W3021441291 hasConceptScore W3021441291C105795698 @default.
- W3021441291 hasConceptScore W3021441291C107673813 @default.
- W3021441291 hasConceptScore W3021441291C111350023 @default.
- W3021441291 hasConceptScore W3021441291C142291917 @default.
- W3021441291 hasConceptScore W3021441291C149782125 @default.
- W3021441291 hasConceptScore W3021441291C158424031 @default.
- W3021441291 hasConceptScore W3021441291C159877910 @default.
- W3021441291 hasConceptScore W3021441291C160234255 @default.
- W3021441291 hasConceptScore W3021441291C177769412 @default.
- W3021441291 hasConceptScore W3021441291C21430997 @default.
- W3021441291 hasConceptScore W3021441291C23922673 @default.
- W3021441291 hasConceptScore W3021441291C33923547 @default.
- W3021441291 hasConceptScore W3021441291C43555835 @default.
- W3021441291 hasConceptScore W3021441291C57830394 @default.
- W3021441291 hasConceptScore W3021441291C91602232 @default.
- W3021441291 hasConceptScore W3021441291C93959086 @default.
- W3021441291 hasConceptScore W3021441291C98763669 @default.
- W3021441291 hasLocation W30214412911 @default.
- W3021441291 hasOpenAccess W3021441291 @default.
- W3021441291 hasPrimaryLocation W30214412911 @default.
- W3021441291 hasRelatedWork W1481749319 @default.
- W3021441291 hasRelatedWork W171322235 @default.
- W3021441291 hasRelatedWork W1933085450 @default.
- W3021441291 hasRelatedWork W2013815286 @default.
- W3021441291 hasRelatedWork W2032554831 @default.
- W3021441291 hasRelatedWork W2070712342 @default.
- W3021441291 hasRelatedWork W2078051489 @default.
- W3021441291 hasRelatedWork W2112810684 @default.
- W3021441291 hasRelatedWork W2137320054 @default.
- W3021441291 hasRelatedWork W2148381455 @default.
- W3021441291 hasRelatedWork W2191661390 @default.
- W3021441291 hasRelatedWork W2235200468 @default.
- W3021441291 hasRelatedWork W2276430096 @default.
- W3021441291 hasRelatedWork W2712681089 @default.
- W3021441291 hasRelatedWork W2757830207 @default.
- W3021441291 hasRelatedWork W2770729853 @default.
- W3021441291 hasRelatedWork W3094352101 @default.
- W3021441291 hasRelatedWork W3123484930 @default.
- W3021441291 hasRelatedWork W3139725584 @default.
- W3021441291 hasRelatedWork W893480 @default.
- W3021441291 isParatext "false" @default.
- W3021441291 isRetracted "false" @default.
- W3021441291 magId "3021441291" @default.
- W3021441291 workType "article" @default.