Matches in SemOpenAlex for { <https://semopenalex.org/work/W3021492717> ?p ?o ?g. }
- W3021492717 abstract "In this paper, we present two results on global continuation of monotone front-type solutions to elliptic PDEs posed on infinite cylinders. This is done under quite general assumptions, and in particular applies even to fully nonlinear equations as well as quasilinear problems with transmission boundary conditions. Our approach is rooted in the analytic global bifurcation theory of Dancer and Buffoni--Toland, but extending it to unbounded domains requires contending with new potential limiting behavior relating to loss of compactness. We obtain an exhaustive set of alternatives for the global behavior of the solution curve that is sharp, with each possibility having a direct analogue in the bifurcation theory of second-order ODEs. As a major application of the general theory, we construct global families of internal hydrodynamic bores. These are traveling front solutions of the full two-phase Euler equation in two dimensions. The fluids are confined to a channel that is bounded above and below by rigid walls, with incompressible and irrotational flow in each layer. Small-amplitude fronts for this system have been obtained by several authors. We give the first large-amplitude result in the form of continuous curves of elevation and depression bores. Following the elevation curve to its extreme, we find waves whose interfaces either overturn (develop a vertical tangent) or become exceptionally singular in that the flow in both layers degenerates at a single point on the boundary. For the curve of depression waves, we prove that either the interface overturns or it comes into contact with the upper wall." @default.
- W3021492717 created "2020-05-13" @default.
- W3021492717 creator A5017484832 @default.
- W3021492717 creator A5033993148 @default.
- W3021492717 creator A5058351212 @default.
- W3021492717 date "2020-05-01" @default.
- W3021492717 modified "2023-09-27" @default.
- W3021492717 title "Global bifurcation for monotone fronts of elliptic equations" @default.
- W3021492717 cites W107356227 @default.
- W3021492717 cites W1502587714 @default.
- W3021492717 cites W1574199771 @default.
- W3021492717 cites W1592960608 @default.
- W3021492717 cites W1866311589 @default.
- W3021492717 cites W1971808848 @default.
- W3021492717 cites W1973017819 @default.
- W3021492717 cites W1987644927 @default.
- W3021492717 cites W1992115736 @default.
- W3021492717 cites W1996950513 @default.
- W3021492717 cites W2003284749 @default.
- W3021492717 cites W2006224789 @default.
- W3021492717 cites W2008027119 @default.
- W3021492717 cites W2027045131 @default.
- W3021492717 cites W2029588972 @default.
- W3021492717 cites W2030408143 @default.
- W3021492717 cites W2033071017 @default.
- W3021492717 cites W2036101287 @default.
- W3021492717 cites W204585258 @default.
- W3021492717 cites W2046183269 @default.
- W3021492717 cites W2046726068 @default.
- W3021492717 cites W2047594562 @default.
- W3021492717 cites W2053959672 @default.
- W3021492717 cites W2054507619 @default.
- W3021492717 cites W2059557389 @default.
- W3021492717 cites W2071513053 @default.
- W3021492717 cites W2072790282 @default.
- W3021492717 cites W2077053042 @default.
- W3021492717 cites W2084297791 @default.
- W3021492717 cites W2093957401 @default.
- W3021492717 cites W2095346778 @default.
- W3021492717 cites W2131169798 @default.
- W3021492717 cites W2134947538 @default.
- W3021492717 cites W2135972791 @default.
- W3021492717 cites W2140809812 @default.
- W3021492717 cites W2151378099 @default.
- W3021492717 cites W2156498905 @default.
- W3021492717 cites W2169206602 @default.
- W3021492717 cites W2256246944 @default.
- W3021492717 cites W2584860331 @default.
- W3021492717 cites W2897976740 @default.
- W3021492717 cites W2952292318 @default.
- W3021492717 cites W2958003494 @default.
- W3021492717 cites W2962955341 @default.
- W3021492717 cites W2963420973 @default.
- W3021492717 cites W2963484921 @default.
- W3021492717 cites W2963721773 @default.
- W3021492717 cites W2963804440 @default.
- W3021492717 cites W2964108553 @default.
- W3021492717 cites W296614255 @default.
- W3021492717 cites W347227607 @default.
- W3021492717 cites W73132052 @default.
- W3021492717 cites W90288657 @default.
- W3021492717 hasPublicationYear "2020" @default.
- W3021492717 type Work @default.
- W3021492717 sameAs 3021492717 @default.
- W3021492717 citedByCount "2" @default.
- W3021492717 countsByYear W30214927172020 @default.
- W3021492717 countsByYear W30214927172021 @default.
- W3021492717 crossrefType "posted-content" @default.
- W3021492717 hasAuthorship W3021492717A5017484832 @default.
- W3021492717 hasAuthorship W3021492717A5033993148 @default.
- W3021492717 hasAuthorship W3021492717A5058351212 @default.
- W3021492717 hasConcept C121332964 @default.
- W3021492717 hasConcept C134306372 @default.
- W3021492717 hasConcept C138187205 @default.
- W3021492717 hasConcept C158622935 @default.
- W3021492717 hasConcept C2524010 @default.
- W3021492717 hasConcept C2781349735 @default.
- W3021492717 hasConcept C2834757 @default.
- W3021492717 hasConcept C33923547 @default.
- W3021492717 hasConcept C34388435 @default.
- W3021492717 hasConcept C62354387 @default.
- W3021492717 hasConcept C62520636 @default.
- W3021492717 hasConcept C85075877 @default.
- W3021492717 hasConceptScore W3021492717C121332964 @default.
- W3021492717 hasConceptScore W3021492717C134306372 @default.
- W3021492717 hasConceptScore W3021492717C138187205 @default.
- W3021492717 hasConceptScore W3021492717C158622935 @default.
- W3021492717 hasConceptScore W3021492717C2524010 @default.
- W3021492717 hasConceptScore W3021492717C2781349735 @default.
- W3021492717 hasConceptScore W3021492717C2834757 @default.
- W3021492717 hasConceptScore W3021492717C33923547 @default.
- W3021492717 hasConceptScore W3021492717C34388435 @default.
- W3021492717 hasConceptScore W3021492717C62354387 @default.
- W3021492717 hasConceptScore W3021492717C62520636 @default.
- W3021492717 hasConceptScore W3021492717C85075877 @default.
- W3021492717 hasLocation W30214927171 @default.
- W3021492717 hasOpenAccess W3021492717 @default.
- W3021492717 hasPrimaryLocation W30214927171 @default.
- W3021492717 hasRelatedWork W1505215610 @default.
- W3021492717 hasRelatedWork W1544384846 @default.