Matches in SemOpenAlex for { <https://semopenalex.org/work/W3021566268> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3021566268 abstract "Spanning trees are a representative example of linear matroid bases that are efficiently countable. Perfect matchings of Pfaffian bipartite graphs are a countable example of common bases of two matrices. Generalizing these two examples, Webb (2004) introduced the notion of Pfaffian pairs as a pair of matrices for which counting of their common bases is tractable via the Cauchy-Binet formula. This paper studies counting on linear matroid problems extending Webb's work. We first introduce Pfaffian parities as an extension of Pfaffian pairs to the linear matroid parity problem, which is a common generalization of the linear matroid intersection problem and the matching problem. We enumerate combinatorial examples of Pfaffian pairs and parities. The variety of the examples illustrates that Pfaffian pairs and parities serve as a unified framework of efficiently countable discrete structures. Based on this framework, we derive celebrated counting theorems, such as Kirchhoff's matrix-tree theorem, Tutte's directed matrix-tree theorem, the Pfaffian matrix-tree theorem, and the Lindstrom-Gessel-Viennot lemma. Our study then turns to algorithmic aspects. We observe that the fastest randomized algorithms for the linear matroid intersection and parity problems by Harvey (2009) and Cheung-Lau-Leung (2014) can be derandomized for Pfaffian pairs and parities. We further present polynomial-time algorithms to count the number of minimum-weight solutions on weighted Pfaffian pairs and parities. Our algorithms make use of Frank's weight splitting lemma for the weighted matroid intersection problem and the algebraic optimality criterion of the weighted linear matroid parity problem given by Iwata-Kobayashi (2017)." @default.
- W3021566268 created "2020-05-13" @default.
- W3021566268 creator A5056811970 @default.
- W3021566268 creator A5065171213 @default.
- W3021566268 date "2019-12-02" @default.
- W3021566268 modified "2023-09-30" @default.
- W3021566268 title "Pfaffian Pairs and Parities: Counting on Linear Matroid Intersection and Parity Problems" @default.
- W3021566268 cites W15553240 @default.
- W3021566268 cites W1562618686 @default.
- W3021566268 cites W1602190525 @default.
- W3021566268 cites W1655990431 @default.
- W3021566268 cites W1843740677 @default.
- W3021566268 cites W1935862350 @default.
- W3021566268 cites W1966657789 @default.
- W3021566268 cites W1973133099 @default.
- W3021566268 cites W2000743971 @default.
- W3021566268 cites W2003029484 @default.
- W3021566268 cites W2006912660 @default.
- W3021566268 cites W2016088388 @default.
- W3021566268 cites W2018158936 @default.
- W3021566268 cites W2019932401 @default.
- W3021566268 cites W2021697855 @default.
- W3021566268 cites W2022124805 @default.
- W3021566268 cites W2023810039 @default.
- W3021566268 cites W2027758271 @default.
- W3021566268 cites W2029673229 @default.
- W3021566268 cites W2031297526 @default.
- W3021566268 cites W2033329811 @default.
- W3021566268 cites W2039034730 @default.
- W3021566268 cites W2064153357 @default.
- W3021566268 cites W2065813152 @default.
- W3021566268 cites W2067113416 @default.
- W3021566268 cites W2085669706 @default.
- W3021566268 cites W2091216084 @default.
- W3021566268 cites W2096486078 @default.
- W3021566268 cites W2120248756 @default.
- W3021566268 cites W2125690626 @default.
- W3021566268 cites W2151718187 @default.
- W3021566268 cites W2154422247 @default.
- W3021566268 cites W2170492169 @default.
- W3021566268 cites W2216649337 @default.
- W3021566268 cites W2258857078 @default.
- W3021566268 cites W2317423124 @default.
- W3021566268 cites W2329866321 @default.
- W3021566268 cites W2572148344 @default.
- W3021566268 cites W2599477347 @default.
- W3021566268 cites W2625145881 @default.
- W3021566268 cites W2792162407 @default.
- W3021566268 cites W2964165785 @default.
- W3021566268 doi "https://doi.org/10.48550/arxiv.1912.00620" @default.
- W3021566268 hasPublicationYear "2019" @default.
- W3021566268 type Work @default.
- W3021566268 sameAs 3021566268 @default.
- W3021566268 citedByCount "0" @default.
- W3021566268 crossrefType "posted-content" @default.
- W3021566268 hasAuthorship W3021566268A5056811970 @default.
- W3021566268 hasAuthorship W3021566268A5065171213 @default.
- W3021566268 hasBestOaLocation W30215662681 @default.
- W3021566268 hasConcept C106286213 @default.
- W3021566268 hasConcept C111034964 @default.
- W3021566268 hasConcept C114614502 @default.
- W3021566268 hasConcept C118615104 @default.
- W3021566268 hasConcept C124344645 @default.
- W3021566268 hasConcept C178621168 @default.
- W3021566268 hasConcept C22425182 @default.
- W3021566268 hasConcept C2775956649 @default.
- W3021566268 hasConcept C33923547 @default.
- W3021566268 hasConceptScore W3021566268C106286213 @default.
- W3021566268 hasConceptScore W3021566268C111034964 @default.
- W3021566268 hasConceptScore W3021566268C114614502 @default.
- W3021566268 hasConceptScore W3021566268C118615104 @default.
- W3021566268 hasConceptScore W3021566268C124344645 @default.
- W3021566268 hasConceptScore W3021566268C178621168 @default.
- W3021566268 hasConceptScore W3021566268C22425182 @default.
- W3021566268 hasConceptScore W3021566268C2775956649 @default.
- W3021566268 hasConceptScore W3021566268C33923547 @default.
- W3021566268 hasLocation W30215662681 @default.
- W3021566268 hasOpenAccess W3021566268 @default.
- W3021566268 hasPrimaryLocation W30215662681 @default.
- W3021566268 hasRelatedWork W1963746795 @default.
- W3021566268 hasRelatedWork W1978795414 @default.
- W3021566268 hasRelatedWork W2016957139 @default.
- W3021566268 hasRelatedWork W2140544491 @default.
- W3021566268 hasRelatedWork W2159059797 @default.
- W3021566268 hasRelatedWork W2625145881 @default.
- W3021566268 hasRelatedWork W2950665492 @default.
- W3021566268 hasRelatedWork W2963105725 @default.
- W3021566268 hasRelatedWork W3021566268 @default.
- W3021566268 hasRelatedWork W4291556988 @default.
- W3021566268 isParatext "false" @default.
- W3021566268 isRetracted "false" @default.
- W3021566268 magId "3021566268" @default.
- W3021566268 workType "article" @default.