Matches in SemOpenAlex for { <https://semopenalex.org/work/W3021566804> ?p ?o ?g. }
- W3021566804 endingPage "5065" @default.
- W3021566804 startingPage "5057" @default.
- W3021566804 abstract "Encoding information in the chemical structure of tectons is the pivotal strategy in self-assembly for the realization of targeted supramolecular structures. However, frequently observed polymorphism in supramolecular monolayers provides experimental evidence for a decisive additional influence of environmental parameters, such as solute concentration or type of solvent, on structure selection. While concentration-induced polymorphism is comparatively well understood, the thermodynamic and molecular origins of solvent-induced polymorphism remain elusive. To shed light on this fundamental aspect of self-assembly, we explore the solvent-induced polymorphism of trimesic acid (TMA) monolayers on graphite as a prototypical example. Using the homologous series of fatty acids as solvents, TMA self-assembles into the anticipated chickenwire polymorph for longer chain fatty acids, whereas the more densely packed, but still porous flower polymorph emerges in shorter chain fatty acids. According to our initial working hypothesis, the origin of this solvent-induced polymorphism lies in the solvent dependence of the free energy gain. Utilizing an adapted Born–Haber cycle constructed from measured TMA sublimation and dissolution enthalpies as well as density functional theory-calculated monolayer binding energies, we quantitatively assessed the self-assembly thermodynamics of both polymorphs in hexanoic, heptanoic, and nonanoic acid. Yet, in contrast to the experimental findings, these results suggest superior thermodynamic stability of the chickenwire polymorph in all solvents. On the other hand, additional experiments comprising variable-temperature scanning tunneling microscopy corroborate that the flower polymorph is thermodynamically most stable in hexanoic acid. To resolve this apparent contradiction, we propose a thermodynamic stabilization of the flower polymorph in hexanoic acid through the stereochemically specific coadsorption of shape-matched solvent molecules in its unique smaller elongated pores. This alternative explanation gains further support from experiments with side-substituted hexanoic acid solvents. Combination of a quantitative thermodynamic analysis and studies with systematic variations of the solvent’s molecular structure holds great promise to enhance the understanding of thus far underexplored solvent effects." @default.
- W3021566804 created "2020-05-13" @default.
- W3021566804 creator A5011581931 @default.
- W3021566804 creator A5013337473 @default.
- W3021566804 creator A5023148239 @default.
- W3021566804 creator A5031150055 @default.
- W3021566804 creator A5037888486 @default.
- W3021566804 creator A5071602380 @default.
- W3021566804 date "2020-04-28" @default.
- W3021566804 modified "2023-09-27" @default.
- W3021566804 title "Origin of Solvent-Induced Polymorphism in Self-Assembly of Trimesic Acid Monolayers at Solid–Liquid Interfaces" @default.
- W3021566804 cites W1902922793 @default.
- W3021566804 cites W1963906357 @default.
- W3021566804 cites W1965954533 @default.
- W3021566804 cites W1969117583 @default.
- W3021566804 cites W1970942193 @default.
- W3021566804 cites W1974259538 @default.
- W3021566804 cites W1976780244 @default.
- W3021566804 cites W1983108159 @default.
- W3021566804 cites W1984706456 @default.
- W3021566804 cites W1986479944 @default.
- W3021566804 cites W1989060947 @default.
- W3021566804 cites W1990868424 @default.
- W3021566804 cites W1996800366 @default.
- W3021566804 cites W1998920258 @default.
- W3021566804 cites W1999086910 @default.
- W3021566804 cites W2000770615 @default.
- W3021566804 cites W2003193361 @default.
- W3021566804 cites W2006361573 @default.
- W3021566804 cites W2007159363 @default.
- W3021566804 cites W2012643173 @default.
- W3021566804 cites W2013245077 @default.
- W3021566804 cites W2013582617 @default.
- W3021566804 cites W2014166972 @default.
- W3021566804 cites W2016177308 @default.
- W3021566804 cites W2036243692 @default.
- W3021566804 cites W2037839091 @default.
- W3021566804 cites W2046699704 @default.
- W3021566804 cites W2052367576 @default.
- W3021566804 cites W2059631318 @default.
- W3021566804 cites W2060304584 @default.
- W3021566804 cites W2067520921 @default.
- W3021566804 cites W2068068287 @default.
- W3021566804 cites W2069334841 @default.
- W3021566804 cites W2071527522 @default.
- W3021566804 cites W2082037197 @default.
- W3021566804 cites W2082509279 @default.
- W3021566804 cites W2087789742 @default.
- W3021566804 cites W2100099594 @default.
- W3021566804 cites W2127832673 @default.
- W3021566804 cites W2132947179 @default.
- W3021566804 cites W2164262780 @default.
- W3021566804 cites W2313149982 @default.
- W3021566804 cites W2318631608 @default.
- W3021566804 cites W2319694381 @default.
- W3021566804 cites W2320432346 @default.
- W3021566804 cites W2323979896 @default.
- W3021566804 cites W2324616539 @default.
- W3021566804 cites W2325993714 @default.
- W3021566804 cites W2327711632 @default.
- W3021566804 cites W2335184943 @default.
- W3021566804 cites W2512360275 @default.
- W3021566804 cites W2535024520 @default.
- W3021566804 cites W2563125179 @default.
- W3021566804 cites W2592620213 @default.
- W3021566804 cites W2613364289 @default.
- W3021566804 cites W2747270148 @default.
- W3021566804 cites W2793239257 @default.
- W3021566804 cites W2800699485 @default.
- W3021566804 cites W2804217748 @default.
- W3021566804 cites W2809221494 @default.
- W3021566804 doi "https://doi.org/10.1021/acs.chemmater.0c00827" @default.
- W3021566804 hasPublicationYear "2020" @default.
- W3021566804 type Work @default.
- W3021566804 sameAs 3021566804 @default.
- W3021566804 citedByCount "21" @default.
- W3021566804 countsByYear W30215668042020 @default.
- W3021566804 countsByYear W30215668042021 @default.
- W3021566804 countsByYear W30215668042022 @default.
- W3021566804 countsByYear W30215668042023 @default.
- W3021566804 crossrefType "journal-article" @default.
- W3021566804 hasAuthorship W3021566804A5011581931 @default.
- W3021566804 hasAuthorship W3021566804A5013337473 @default.
- W3021566804 hasAuthorship W3021566804A5023148239 @default.
- W3021566804 hasAuthorship W3021566804A5031150055 @default.
- W3021566804 hasAuthorship W3021566804A5037888486 @default.
- W3021566804 hasAuthorship W3021566804A5071602380 @default.
- W3021566804 hasBestOaLocation W30215668042 @default.
- W3021566804 hasConcept C104317684 @default.
- W3021566804 hasConcept C115624301 @default.
- W3021566804 hasConcept C121332964 @default.
- W3021566804 hasConcept C135763542 @default.
- W3021566804 hasConcept C146477669 @default.
- W3021566804 hasConcept C149737253 @default.
- W3021566804 hasConcept C178790620 @default.
- W3021566804 hasConcept C185592680 @default.
- W3021566804 hasConcept C2778684945 @default.
- W3021566804 hasConcept C2780471494 @default.