Matches in SemOpenAlex for { <https://semopenalex.org/work/W3021569284> ?p ?o ?g. }
- W3021569284 endingPage "177" @default.
- W3021569284 startingPage "164" @default.
- W3021569284 abstract "Owing to the sharp rise in the severity of the threats imposed by software vulnerabilities, software vulnerability detection has become an important concern in the software industry, such as the embedded systems industry, and in the field of computer security. Software vulnerability detection can be carried out at the source code or binary level. However, the latter is more impactful and practical since when using commercial software, we usually only possess binary software. In this paper, we leverage deep learning and kernel methods to propose the Deep Cost-sensitive Kernel Machine, a method that inherits the advantages of deep learning methods in efficiently tackling structural data and kernel methods in learning the characteristic of vulnerable binary examples with high generalization capacity. We conduct experiments on two real-world binary datasets. The experimental results have shown a convincing outperformance of our proposed method over the baselines." @default.
- W3021569284 created "2020-05-13" @default.
- W3021569284 creator A5015257246 @default.
- W3021569284 creator A5024595046 @default.
- W3021569284 creator A5035331823 @default.
- W3021569284 creator A5036447132 @default.
- W3021569284 creator A5041968718 @default.
- W3021569284 creator A5056750525 @default.
- W3021569284 creator A5082913979 @default.
- W3021569284 date "2020-01-01" @default.
- W3021569284 modified "2023-10-07" @default.
- W3021569284 title "Deep Cost-Sensitive Kernel Machine for Binary Software Vulnerability Detection" @default.
- W3021569284 cites W1832693441 @default.
- W3021569284 cites W1985482882 @default.
- W3021569284 cites W2057525495 @default.
- W3021569284 cites W2088076694 @default.
- W3021569284 cites W2107147876 @default.
- W3021569284 cites W2132870739 @default.
- W3021569284 cites W2297419069 @default.
- W3021569284 cites W2517194566 @default.
- W3021569284 cites W2741352581 @default.
- W3021569284 cites W2775658044 @default.
- W3021569284 cites W2796200341 @default.
- W3021569284 cites W2883816343 @default.
- W3021569284 cites W3101228802 @default.
- W3021569284 cites W4239510810 @default.
- W3021569284 cites W728297 @default.
- W3021569284 doi "https://doi.org/10.1007/978-3-030-47436-2_13" @default.
- W3021569284 hasPublicationYear "2020" @default.
- W3021569284 type Work @default.
- W3021569284 sameAs 3021569284 @default.
- W3021569284 citedByCount "4" @default.
- W3021569284 countsByYear W30215692842020 @default.
- W3021569284 countsByYear W30215692842022 @default.
- W3021569284 countsByYear W30215692842023 @default.
- W3021569284 crossrefType "book-chapter" @default.
- W3021569284 hasAuthorship W3021569284A5015257246 @default.
- W3021569284 hasAuthorship W3021569284A5024595046 @default.
- W3021569284 hasAuthorship W3021569284A5035331823 @default.
- W3021569284 hasAuthorship W3021569284A5036447132 @default.
- W3021569284 hasAuthorship W3021569284A5041968718 @default.
- W3021569284 hasAuthorship W3021569284A5056750525 @default.
- W3021569284 hasAuthorship W3021569284A5082913979 @default.
- W3021569284 hasBestOaLocation W30215692841 @default.
- W3021569284 hasConcept C108583219 @default.
- W3021569284 hasConcept C111919701 @default.
- W3021569284 hasConcept C114614502 @default.
- W3021569284 hasConcept C119857082 @default.
- W3021569284 hasConcept C12267149 @default.
- W3021569284 hasConcept C124101348 @default.
- W3021569284 hasConcept C153083717 @default.
- W3021569284 hasConcept C154945302 @default.
- W3021569284 hasConcept C2777904410 @default.
- W3021569284 hasConcept C33923547 @default.
- W3021569284 hasConcept C38652104 @default.
- W3021569284 hasConcept C41008148 @default.
- W3021569284 hasConcept C43126263 @default.
- W3021569284 hasConcept C48372109 @default.
- W3021569284 hasConcept C63435697 @default.
- W3021569284 hasConcept C66905080 @default.
- W3021569284 hasConcept C74193536 @default.
- W3021569284 hasConcept C94375191 @default.
- W3021569284 hasConcept C95713431 @default.
- W3021569284 hasConceptScore W3021569284C108583219 @default.
- W3021569284 hasConceptScore W3021569284C111919701 @default.
- W3021569284 hasConceptScore W3021569284C114614502 @default.
- W3021569284 hasConceptScore W3021569284C119857082 @default.
- W3021569284 hasConceptScore W3021569284C12267149 @default.
- W3021569284 hasConceptScore W3021569284C124101348 @default.
- W3021569284 hasConceptScore W3021569284C153083717 @default.
- W3021569284 hasConceptScore W3021569284C154945302 @default.
- W3021569284 hasConceptScore W3021569284C2777904410 @default.
- W3021569284 hasConceptScore W3021569284C33923547 @default.
- W3021569284 hasConceptScore W3021569284C38652104 @default.
- W3021569284 hasConceptScore W3021569284C41008148 @default.
- W3021569284 hasConceptScore W3021569284C43126263 @default.
- W3021569284 hasConceptScore W3021569284C48372109 @default.
- W3021569284 hasConceptScore W3021569284C63435697 @default.
- W3021569284 hasConceptScore W3021569284C66905080 @default.
- W3021569284 hasConceptScore W3021569284C74193536 @default.
- W3021569284 hasConceptScore W3021569284C94375191 @default.
- W3021569284 hasConceptScore W3021569284C95713431 @default.
- W3021569284 hasLocation W30215692841 @default.
- W3021569284 hasOpenAccess W3021569284 @default.
- W3021569284 hasPrimaryLocation W30215692841 @default.
- W3021569284 hasRelatedWork W2795798526 @default.
- W3021569284 hasRelatedWork W3133593829 @default.
- W3021569284 hasRelatedWork W3215867059 @default.
- W3021569284 hasRelatedWork W4223943233 @default.
- W3021569284 hasRelatedWork W4285106639 @default.
- W3021569284 hasRelatedWork W4312200629 @default.
- W3021569284 hasRelatedWork W4360585206 @default.
- W3021569284 hasRelatedWork W4360764843 @default.
- W3021569284 hasRelatedWork W4364306694 @default.
- W3021569284 hasRelatedWork W4377131047 @default.
- W3021569284 isParatext "false" @default.
- W3021569284 isRetracted "false" @default.
- W3021569284 magId "3021569284" @default.