Matches in SemOpenAlex for { <https://semopenalex.org/work/W3021695719> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W3021695719 abstract "Let $G=G(K)$ be a simple algebraic group defined over an algebraically closed field $K$ of characteristic $p>0$. A subgroup $X$ of $G$ is said to be $G$-completely reducible if, whenever it is contained in a parabolic subgroup of $G$, it is contained in a Levi subgroup of that parabolic. A subgroup $X$ of $G$ is said to be $G$-irreducible if $X$ is in no parabolic subgroup of $G$; and $G$-reducible if it is in some parabolic of $G$. In this thesis, we consider the case that $G$ is of exceptional type. When $G$ is of type $G_2$ we find all conjugacy classes of closed, connected, reductive subgroups of $G$. When $G$ is of type $F_4$ we find all conjugacy classes of closed, connected, reductive $G$-reducible subgroups $X$ of $G$. Thus we also find all non-$G$-completely reducible closed, connected, reductive subgroups of $G$. When $X$ is closed, connected and simple of rank at least two, we find all conjugacy classes of $G$-irreducible subgroups $X$ of $G$. Together with the work of Amende in [Ame05] classifying irreducible subgroups of type $A_1$ this gives a complete classification of the simple subgroups of $G$. Amongst the classification of subgroups of $G=F_4(K)$ we find infinite collections of subgroups $X$ of $G$ which are maximal amongst all reductive subgroups of $G$ but not maximal subgroups of $G$; thus they are not contained in any maximal reductive subgroup of $G$. The connected, semisimple subgroups contained in no maximal reductive subgroup of $G$ are of type $A_1$ when $p=3$ and of semisimple type $A_1^2$ or $A_1$ when $p=2$. Some of those which occur when $p=2$ act indecomposably on the 26-dimensional irreducible representation of $G$. We also use this classification to find all subgroups of $G=F_4$ which are generated by short root elements of $G$, by utilising and extending the results of [LS94]." @default.
- W3021695719 created "2020-05-13" @default.
- W3021695719 creator A5061534365 @default.
- W3021695719 date "2010-11-01" @default.
- W3021695719 modified "2023-09-26" @default.
- W3021695719 title "G-complete reducibility and the exceptional algebraic groups" @default.
- W3021695719 hasPublicationYear "2010" @default.
- W3021695719 type Work @default.
- W3021695719 sameAs 3021695719 @default.
- W3021695719 citedByCount "1" @default.
- W3021695719 countsByYear W30216957192016 @default.
- W3021695719 crossrefType "journal-article" @default.
- W3021695719 hasAuthorship W3021695719A5061534365 @default.
- W3021695719 hasConcept C111472728 @default.
- W3021695719 hasConcept C114614502 @default.
- W3021695719 hasConcept C121332964 @default.
- W3021695719 hasConcept C134306372 @default.
- W3021695719 hasConcept C138885662 @default.
- W3021695719 hasConcept C164226766 @default.
- W3021695719 hasConcept C167204820 @default.
- W3021695719 hasConcept C179415260 @default.
- W3021695719 hasConcept C187173678 @default.
- W3021695719 hasConcept C18903297 @default.
- W3021695719 hasConcept C203701370 @default.
- W3021695719 hasConcept C2777299769 @default.
- W3021695719 hasConcept C2780586882 @default.
- W3021695719 hasConcept C2781311116 @default.
- W3021695719 hasConcept C33923547 @default.
- W3021695719 hasConcept C62520636 @default.
- W3021695719 hasConcept C86803240 @default.
- W3021695719 hasConcept C87945829 @default.
- W3021695719 hasConcept C9376300 @default.
- W3021695719 hasConceptScore W3021695719C111472728 @default.
- W3021695719 hasConceptScore W3021695719C114614502 @default.
- W3021695719 hasConceptScore W3021695719C121332964 @default.
- W3021695719 hasConceptScore W3021695719C134306372 @default.
- W3021695719 hasConceptScore W3021695719C138885662 @default.
- W3021695719 hasConceptScore W3021695719C164226766 @default.
- W3021695719 hasConceptScore W3021695719C167204820 @default.
- W3021695719 hasConceptScore W3021695719C179415260 @default.
- W3021695719 hasConceptScore W3021695719C187173678 @default.
- W3021695719 hasConceptScore W3021695719C18903297 @default.
- W3021695719 hasConceptScore W3021695719C203701370 @default.
- W3021695719 hasConceptScore W3021695719C2777299769 @default.
- W3021695719 hasConceptScore W3021695719C2780586882 @default.
- W3021695719 hasConceptScore W3021695719C2781311116 @default.
- W3021695719 hasConceptScore W3021695719C33923547 @default.
- W3021695719 hasConceptScore W3021695719C62520636 @default.
- W3021695719 hasConceptScore W3021695719C86803240 @default.
- W3021695719 hasConceptScore W3021695719C87945829 @default.
- W3021695719 hasConceptScore W3021695719C9376300 @default.
- W3021695719 hasLocation W30216957191 @default.
- W3021695719 hasOpenAccess W3021695719 @default.
- W3021695719 hasPrimaryLocation W30216957191 @default.
- W3021695719 hasRelatedWork W1656729121 @default.
- W3021695719 hasRelatedWork W1876214713 @default.
- W3021695719 hasRelatedWork W1974515183 @default.
- W3021695719 hasRelatedWork W1977490403 @default.
- W3021695719 hasRelatedWork W2003159950 @default.
- W3021695719 hasRelatedWork W2013169346 @default.
- W3021695719 hasRelatedWork W2023074283 @default.
- W3021695719 hasRelatedWork W2032177310 @default.
- W3021695719 hasRelatedWork W2044465603 @default.
- W3021695719 hasRelatedWork W2076266534 @default.
- W3021695719 hasRelatedWork W2076986346 @default.
- W3021695719 hasRelatedWork W2124705247 @default.
- W3021695719 hasRelatedWork W2302779817 @default.
- W3021695719 hasRelatedWork W2366312184 @default.
- W3021695719 hasRelatedWork W2379850763 @default.
- W3021695719 hasRelatedWork W2380402452 @default.
- W3021695719 hasRelatedWork W2464251432 @default.
- W3021695719 hasRelatedWork W2963227550 @default.
- W3021695719 hasRelatedWork W3151280818 @default.
- W3021695719 hasRelatedWork W2484050114 @default.
- W3021695719 isParatext "false" @default.
- W3021695719 isRetracted "false" @default.
- W3021695719 magId "3021695719" @default.
- W3021695719 workType "article" @default.