Matches in SemOpenAlex for { <https://semopenalex.org/work/W3021718684> ?p ?o ?g. }
- W3021718684 abstract "Abstract It has extensively been documented that human memory exhibits a wide range of systematic distortions, which have been associated with resource constraints. Resource constraints on memory can be formalised in the normative framework of lossy compression, however traditional lossy compression algorithms result in qualitatively different distortions to those found in experiments with humans. We argue that the form of distortions is characteristic of relying on a generative model adapted to the environment for compression. We show that this semantic compression framework can provide a unifying explanation of a wide variety of memory phenomena. We harness recent advances in learning deep generative models, that yield powerful tools to approximate generative models of complex data. We use three datasets, chess games, natural text, and hand-drawn sketches, to demonstrate the effects of semantic compression on memory performance. Our model accounts for memory distortions related to domain expertise, gist-based distortions, contextual effects, and delayed recall. Author summary Human memory performs surprisingly poorly in many everyday tasks, which have been richly documented in laboratory experiments. While constraints on memory resources necessarily imply a loss of information, it is possible to do well or badly in relation to available memory resources. In this paper we recruit information theory, which establishes how to optimally lose information based on prior and complete knowledge of environmental statistics. For this, we address two challenges. 1, The environmental statistics is not known for the brain, rather these have to be learned over time from limited observations. 2, Information theory does not specify how different distortions of original experiences should be penalised. In this paper we tackle these challenges by assuming that a latent variable generative model of the environment is maintained in semantic memory. We show that compression of experiences through a generative model gives rise to systematic distortions that qualitatively correspond to a diverse range of observations in the experimental literature." @default.
- W3021718684 created "2020-05-13" @default.
- W3021718684 creator A5015978433 @default.
- W3021718684 creator A5018664035 @default.
- W3021718684 creator A5054786733 @default.
- W3021718684 date "2020-05-08" @default.
- W3021718684 modified "2023-10-18" @default.
- W3021718684 title "Optimal forgetting: Semantic compression of episodic memories" @default.
- W3021718684 cites W1682403713 @default.
- W3021718684 cites W1964893602 @default.
- W3021718684 cites W1965191725 @default.
- W3021718684 cites W1965929030 @default.
- W3021718684 cites W1976766238 @default.
- W3021718684 cites W1985684836 @default.
- W3021718684 cites W2004569303 @default.
- W3021718684 cites W2007777885 @default.
- W3021718684 cites W2008094377 @default.
- W3021718684 cites W2017282333 @default.
- W3021718684 cites W2018290856 @default.
- W3021718684 cites W2024177902 @default.
- W3021718684 cites W2033621082 @default.
- W3021718684 cites W2042702437 @default.
- W3021718684 cites W2042844540 @default.
- W3021718684 cites W2046305895 @default.
- W3021718684 cites W2072870558 @default.
- W3021718684 cites W2073166664 @default.
- W3021718684 cites W2078941260 @default.
- W3021718684 cites W2085663684 @default.
- W3021718684 cites W2086390580 @default.
- W3021718684 cites W2091785129 @default.
- W3021718684 cites W2094803669 @default.
- W3021718684 cites W2097868335 @default.
- W3021718684 cites W2098841294 @default.
- W3021718684 cites W2104187587 @default.
- W3021718684 cites W2105884991 @default.
- W3021718684 cites W2123713131 @default.
- W3021718684 cites W2125663122 @default.
- W3021718684 cites W2130108344 @default.
- W3021718684 cites W2134460774 @default.
- W3021718684 cites W2139121205 @default.
- W3021718684 cites W2141031554 @default.
- W3021718684 cites W2143386621 @default.
- W3021718684 cites W2147336195 @default.
- W3021718684 cites W2151196108 @default.
- W3021718684 cites W2151289144 @default.
- W3021718684 cites W2154601892 @default.
- W3021718684 cites W2154852160 @default.
- W3021718684 cites W2167688842 @default.
- W3021718684 cites W2170585417 @default.
- W3021718684 cites W2197227940 @default.
- W3021718684 cites W2346736747 @default.
- W3021718684 cites W2378908843 @default.
- W3021718684 cites W2414307079 @default.
- W3021718684 cites W2424347275 @default.
- W3021718684 cites W2559277598 @default.
- W3021718684 cites W2622233359 @default.
- W3021718684 cites W2722019070 @default.
- W3021718684 cites W2811510758 @default.
- W3021718684 cites W2886611495 @default.
- W3021718684 cites W2891810238 @default.
- W3021718684 cites W2970220400 @default.
- W3021718684 cites W2982853315 @default.
- W3021718684 cites W3018592204 @default.
- W3021718684 cites W3196799417 @default.
- W3021718684 cites W4211165067 @default.
- W3021718684 cites W4214717370 @default.
- W3021718684 cites W4230690308 @default.
- W3021718684 cites W4237242455 @default.
- W3021718684 cites W4243467895 @default.
- W3021718684 cites W4291162438 @default.
- W3021718684 cites W4376595374 @default.
- W3021718684 cites W59531631 @default.
- W3021718684 doi "https://doi.org/10.1101/2020.05.06.080838" @default.
- W3021718684 hasPublicationYear "2020" @default.
- W3021718684 type Work @default.
- W3021718684 sameAs 3021718684 @default.
- W3021718684 citedByCount "1" @default.
- W3021718684 countsByYear W30217186842020 @default.
- W3021718684 crossrefType "posted-content" @default.
- W3021718684 hasAuthorship W3021718684A5015978433 @default.
- W3021718684 hasAuthorship W3021718684A5018664035 @default.
- W3021718684 hasAuthorship W3021718684A5054786733 @default.
- W3021718684 hasBestOaLocation W30217186841 @default.
- W3021718684 hasConcept C100660578 @default.
- W3021718684 hasConcept C119857082 @default.
- W3021718684 hasConcept C136197465 @default.
- W3021718684 hasConcept C154945302 @default.
- W3021718684 hasConcept C15744967 @default.
- W3021718684 hasConcept C165021410 @default.
- W3021718684 hasConcept C167966045 @default.
- W3021718684 hasConcept C169760540 @default.
- W3021718684 hasConcept C169900460 @default.
- W3021718684 hasConcept C180747234 @default.
- W3021718684 hasConcept C188147891 @default.
- W3021718684 hasConcept C197914299 @default.
- W3021718684 hasConcept C39890363 @default.
- W3021718684 hasConcept C41008148 @default.
- W3021718684 hasConcept C7149132 @default.
- W3021718684 hasConcept C88576662 @default.
- W3021718684 hasConceptScore W3021718684C100660578 @default.