Matches in SemOpenAlex for { <https://semopenalex.org/work/W3021728802> ?p ?o ?g. }
- W3021728802 endingPage "80715" @default.
- W3021728802 startingPage "80707" @default.
- W3021728802 abstract "Intelligent Transportation Systems (ITS) research and applications benefit from accurate short-term traffic state forecasting. To improve the forecasting accuracy, this paper proposes a deep learning based multitask learning Gated Recurrent Units (MTL-GRU) with residual mappings. To enhance the performance of the MTL-GRU, feature engineering is introduced to select the most informative features for the forecasting. Then, based on real-world datasets, numerical results show that the MTL-GRU can well estimate traffic flow and speed simultaneously, and performs better than other counterparts. Experiments also show that the deep learning based MTL-GRU model can overpower the bottleneck caused by enlarging training datasets and continue to gain benefits. The results suggest the proposed MTL-GRU model with residual mappings is promising to forecast short-term traffic state." @default.
- W3021728802 created "2020-05-13" @default.
- W3021728802 creator A5014223717 @default.
- W3021728802 creator A5027212778 @default.
- W3021728802 creator A5073110676 @default.
- W3021728802 creator A5091134284 @default.
- W3021728802 date "2020-01-01" @default.
- W3021728802 modified "2023-10-15" @default.
- W3021728802 title "A Multitask Learning Model for Traffic Flow and Speed Forecasting" @default.
- W3021728802 cites W1631393190 @default.
- W3021728802 cites W1777628566 @default.
- W3021728802 cites W1973943669 @default.
- W3021728802 cites W1982978808 @default.
- W3021728802 cites W1984969638 @default.
- W3021728802 cites W2036785686 @default.
- W3021728802 cites W2040297119 @default.
- W3021728802 cites W2049777773 @default.
- W3021728802 cites W2064675550 @default.
- W3021728802 cites W2131767615 @default.
- W3021728802 cites W2150152686 @default.
- W3021728802 cites W2165991108 @default.
- W3021728802 cites W2171234954 @default.
- W3021728802 cites W2190353863 @default.
- W3021728802 cites W2194775991 @default.
- W3021728802 cites W2470641485 @default.
- W3021728802 cites W2593182953 @default.
- W3021728802 cites W2772594457 @default.
- W3021728802 cites W2783231089 @default.
- W3021728802 cites W2793811777 @default.
- W3021728802 cites W2793820729 @default.
- W3021728802 cites W2884001105 @default.
- W3021728802 cites W2891076394 @default.
- W3021728802 cites W2942392852 @default.
- W3021728802 cites W2946782700 @default.
- W3021728802 cites W2963377935 @default.
- W3021728802 cites W2978273467 @default.
- W3021728802 cites W2979864289 @default.
- W3021728802 cites W2996919856 @default.
- W3021728802 cites W3007765705 @default.
- W3021728802 cites W4242121569 @default.
- W3021728802 doi "https://doi.org/10.1109/access.2020.2990958" @default.
- W3021728802 hasPublicationYear "2020" @default.
- W3021728802 type Work @default.
- W3021728802 sameAs 3021728802 @default.
- W3021728802 citedByCount "21" @default.
- W3021728802 countsByYear W30217288022020 @default.
- W3021728802 countsByYear W30217288022021 @default.
- W3021728802 countsByYear W30217288022022 @default.
- W3021728802 countsByYear W30217288022023 @default.
- W3021728802 crossrefType "journal-article" @default.
- W3021728802 hasAuthorship W3021728802A5014223717 @default.
- W3021728802 hasAuthorship W3021728802A5027212778 @default.
- W3021728802 hasAuthorship W3021728802A5073110676 @default.
- W3021728802 hasAuthorship W3021728802A5091134284 @default.
- W3021728802 hasBestOaLocation W30217288021 @default.
- W3021728802 hasConcept C108583219 @default.
- W3021728802 hasConcept C11413529 @default.
- W3021728802 hasConcept C119857082 @default.
- W3021728802 hasConcept C127413603 @default.
- W3021728802 hasConcept C138885662 @default.
- W3021728802 hasConcept C147176958 @default.
- W3021728802 hasConcept C149635348 @default.
- W3021728802 hasConcept C154945302 @default.
- W3021728802 hasConcept C155512373 @default.
- W3021728802 hasConcept C201995342 @default.
- W3021728802 hasConcept C207512268 @default.
- W3021728802 hasConcept C2776401178 @default.
- W3021728802 hasConcept C2778827112 @default.
- W3021728802 hasConcept C2780451532 @default.
- W3021728802 hasConcept C2780513914 @default.
- W3021728802 hasConcept C28006648 @default.
- W3021728802 hasConcept C38652104 @default.
- W3021728802 hasConcept C41008148 @default.
- W3021728802 hasConcept C41895202 @default.
- W3021728802 hasConcept C47796450 @default.
- W3021728802 hasConceptScore W3021728802C108583219 @default.
- W3021728802 hasConceptScore W3021728802C11413529 @default.
- W3021728802 hasConceptScore W3021728802C119857082 @default.
- W3021728802 hasConceptScore W3021728802C127413603 @default.
- W3021728802 hasConceptScore W3021728802C138885662 @default.
- W3021728802 hasConceptScore W3021728802C147176958 @default.
- W3021728802 hasConceptScore W3021728802C149635348 @default.
- W3021728802 hasConceptScore W3021728802C154945302 @default.
- W3021728802 hasConceptScore W3021728802C155512373 @default.
- W3021728802 hasConceptScore W3021728802C201995342 @default.
- W3021728802 hasConceptScore W3021728802C207512268 @default.
- W3021728802 hasConceptScore W3021728802C2776401178 @default.
- W3021728802 hasConceptScore W3021728802C2778827112 @default.
- W3021728802 hasConceptScore W3021728802C2780451532 @default.
- W3021728802 hasConceptScore W3021728802C2780513914 @default.
- W3021728802 hasConceptScore W3021728802C28006648 @default.
- W3021728802 hasConceptScore W3021728802C38652104 @default.
- W3021728802 hasConceptScore W3021728802C41008148 @default.
- W3021728802 hasConceptScore W3021728802C41895202 @default.
- W3021728802 hasConceptScore W3021728802C47796450 @default.
- W3021728802 hasFunder F4320321001 @default.
- W3021728802 hasLocation W30217288021 @default.
- W3021728802 hasOpenAccess W3021728802 @default.