Matches in SemOpenAlex for { <https://semopenalex.org/work/W3021800675> ?p ?o ?g. }
- W3021800675 endingPage "293" @default.
- W3021800675 startingPage "293" @default.
- W3021800675 abstract "This paper presents WODAN2.0, a workflow using Deep Learning for the automated detection of multiple archaeological object classes in LiDAR data from the Netherlands. WODAN2.0 is developed to rapidly and systematically map archaeology in large and complex datasets. To investigate its practical value, a large, random test dataset—next to a small, non-random dataset—was developed, which better represents the real-world situation of scarce archaeological objects in different types of complex terrain. To reduce the number of false positives caused by specific regions in the research area, a novel approach has been developed and implemented called Location-Based Ranking. Experiments show that WODAN2.0 has a performance of circa 70% for barrows and Celtic fields on the small, non-random testing dataset, while the performance on the large, random testing dataset is lower: circa 50% for barrows, circa 46% for Celtic fields, and circa 18% for charcoal kilns. The results show that the introduction of Location-Based Ranking and bagging leads to an improvement in performance varying between 17% and 35%. However, WODAN2.0 does not reach or exceed general human performance, when compared to the results of a citizen science project conducted in the same research area." @default.
- W3021800675 created "2020-05-13" @default.
- W3021800675 creator A5019112772 @default.
- W3021800675 creator A5044340396 @default.
- W3021800675 creator A5072593238 @default.
- W3021800675 creator A5088765830 @default.
- W3021800675 date "2020-05-01" @default.
- W3021800675 modified "2023-09-30" @default.
- W3021800675 title "Combining Deep Learning and Location-Based Ranking for Large-Scale Archaeological Prospection of LiDAR Data from The Netherlands" @default.
- W3021800675 cites W1536680647 @default.
- W3021800675 cites W1680797894 @default.
- W3021800675 cites W1922352466 @default.
- W3021800675 cites W1998643995 @default.
- W3021800675 cites W2000399324 @default.
- W3021800675 cites W2004213708 @default.
- W3021800675 cites W2008235313 @default.
- W3021800675 cites W2017723084 @default.
- W3021800675 cites W2029609280 @default.
- W3021800675 cites W2046746912 @default.
- W3021800675 cites W2062118960 @default.
- W3021800675 cites W2062557691 @default.
- W3021800675 cites W2066265557 @default.
- W3021800675 cites W2068976599 @default.
- W3021800675 cites W2088049833 @default.
- W3021800675 cites W2091460873 @default.
- W3021800675 cites W2102605133 @default.
- W3021800675 cites W2117539524 @default.
- W3021800675 cites W2134038604 @default.
- W3021800675 cites W2176950688 @default.
- W3021800675 cites W2192434319 @default.
- W3021800675 cites W2195080394 @default.
- W3021800675 cites W2202777762 @default.
- W3021800675 cites W2230801863 @default.
- W3021800675 cites W2281535235 @default.
- W3021800675 cites W2344337985 @default.
- W3021800675 cites W2399201350 @default.
- W3021800675 cites W2492344942 @default.
- W3021800675 cites W2508780456 @default.
- W3021800675 cites W2522266675 @default.
- W3021800675 cites W2549481075 @default.
- W3021800675 cites W2557668118 @default.
- W3021800675 cites W2587248218 @default.
- W3021800675 cites W2623133424 @default.
- W3021800675 cites W2735280849 @default.
- W3021800675 cites W2789494922 @default.
- W3021800675 cites W2791203713 @default.
- W3021800675 cites W2793669713 @default.
- W3021800675 cites W2801699037 @default.
- W3021800675 cites W2803867573 @default.
- W3021800675 cites W2804436788 @default.
- W3021800675 cites W2808898617 @default.
- W3021800675 cites W2903009718 @default.
- W3021800675 cites W2913384164 @default.
- W3021800675 cites W2919115771 @default.
- W3021800675 cites W2921243212 @default.
- W3021800675 cites W2922858103 @default.
- W3021800675 cites W2925480424 @default.
- W3021800675 cites W2945002414 @default.
- W3021800675 cites W2945356678 @default.
- W3021800675 cites W2966851014 @default.
- W3021800675 cites W2971333596 @default.
- W3021800675 cites W3005510284 @default.
- W3021800675 cites W3005550470 @default.
- W3021800675 cites W3005743304 @default.
- W3021800675 cites W3104341624 @default.
- W3021800675 cites W4212883601 @default.
- W3021800675 cites W4237047192 @default.
- W3021800675 cites W639708223 @default.
- W3021800675 cites W76789302 @default.
- W3021800675 doi "https://doi.org/10.3390/ijgi9050293" @default.
- W3021800675 hasPublicationYear "2020" @default.
- W3021800675 type Work @default.
- W3021800675 sameAs 3021800675 @default.
- W3021800675 citedByCount "38" @default.
- W3021800675 countsByYear W30218006752020 @default.
- W3021800675 countsByYear W30218006752021 @default.
- W3021800675 countsByYear W30218006752022 @default.
- W3021800675 countsByYear W30218006752023 @default.
- W3021800675 crossrefType "journal-article" @default.
- W3021800675 hasAuthorship W3021800675A5019112772 @default.
- W3021800675 hasAuthorship W3021800675A5044340396 @default.
- W3021800675 hasAuthorship W3021800675A5072593238 @default.
- W3021800675 hasAuthorship W3021800675A5088765830 @default.
- W3021800675 hasBestOaLocation W30218006751 @default.
- W3021800675 hasConcept C106159264 @default.
- W3021800675 hasConcept C124101348 @default.
- W3021800675 hasConcept C128942645 @default.
- W3021800675 hasConcept C154945302 @default.
- W3021800675 hasConcept C161840515 @default.
- W3021800675 hasConcept C166957645 @default.
- W3021800675 hasConcept C169258074 @default.
- W3021800675 hasConcept C177212765 @default.
- W3021800675 hasConcept C189430467 @default.
- W3021800675 hasConcept C205649164 @default.
- W3021800675 hasConcept C2778755073 @default.
- W3021800675 hasConcept C41008148 @default.
- W3021800675 hasConcept C51399673 @default.
- W3021800675 hasConcept C58640448 @default.