Matches in SemOpenAlex for { <https://semopenalex.org/work/W3021820897> ?p ?o ?g. }
- W3021820897 endingPage "116884" @default.
- W3021820897 startingPage "116884" @default.
- W3021820897 abstract "Multi-parametric quantitative MRI (qMRI) of the spinal cord is a promising non-invasive tool to probe early microstructural damage in neurological disorders. It is usually performed in vivo by combining acquisitions with multiple signal readouts, which exhibit different thermal noise levels, geometrical distortions and susceptibility to physiological noise. This ultimately hinders joint multi-contrast modelling and makes the geometric correspondence of parametric maps challenging. We propose an approach to overcome these limitations, by implementing state-of-the-art microstructural MRI of the spinal cord with a unified signal readout in vivo (i.e. with matched spatial encoding parameters across a range of imaging contrasts). We base our acquisition on single-shot echo planar imaging with reduced field-of-view, and obtain data from two different vendors (vendor 1: Philips Achieva; vendor 2: Siemens Prisma). Importantly, the unified acquisition allows us to compare signal and noise across contrasts, thus enabling overall quality enhancement via multi-contrast image denoising methods. As a proof-of-concept, here we provide a demonstration with one such method, known as Marchenko-Pastur (MP) Principal Component Analysis (PCA) denoising. MP-PCA is a singular value (SV) decomposition truncation approach that relies on redundant acquisitions, i.e. such that the number of measurements is large compared to the number of components that are maintained in the truncated SV decomposition. Here we used in vivo and synthetic data to test whether a unified readout enables more efficient MP-PCA denoising of less redundant acquisitions, since these can be denoised jointly with more redundant ones. We demonstrate that a unified readout provides robust multi-parametric maps, including diffusion and kurtosis tensors from diffusion MRI, myelin metrics from two-pool magnetisation transfer, and T1 and T2 from relaxometry. Moreover, we show that MP-PCA improves the quality of our multi-contrast acquisitions, since it reduces the coefficient of variation (i.e. variability) by up to 17% for mean kurtosis, 8% for bound pool fraction (myelin-sensitive), and 13% for T1, while enabling more efficient denoising of modalities limited in redundancy (e.g. relaxometry). In conclusion, multi-parametric spinal cord qMRI with unified readout is feasible and provides robust microstructural metrics with matched resolution and distortions, whose quality benefits from multi-contrast denoising methods such as MP-PCA." @default.
- W3021820897 created "2020-05-13" @default.
- W3021820897 creator A5009765322 @default.
- W3021820897 creator A5033449704 @default.
- W3021820897 creator A5037442059 @default.
- W3021820897 creator A5042026137 @default.
- W3021820897 creator A5050496678 @default.
- W3021820897 creator A5060177266 @default.
- W3021820897 creator A5064709895 @default.
- W3021820897 creator A5084155345 @default.
- W3021820897 creator A5086533491 @default.
- W3021820897 creator A5090786767 @default.
- W3021820897 date "2020-08-01" @default.
- W3021820897 modified "2023-10-15" @default.
- W3021820897 title "Multi-parametric quantitative in vivo spinal cord MRI with unified signal readout and image denoising" @default.
- W3021820897 cites W1577466874 @default.
- W3021820897 cites W1588899353 @default.
- W3021820897 cites W1901763880 @default.
- W3021820897 cites W1947057053 @default.
- W3021820897 cites W1949323849 @default.
- W3021820897 cites W1964802316 @default.
- W3021820897 cites W1970713332 @default.
- W3021820897 cites W1987964793 @default.
- W3021820897 cites W2009921624 @default.
- W3021820897 cites W2012807998 @default.
- W3021820897 cites W2017304912 @default.
- W3021820897 cites W2023173554 @default.
- W3021820897 cites W2037022584 @default.
- W3021820897 cites W2045527031 @default.
- W3021820897 cites W2045547832 @default.
- W3021820897 cites W2058734447 @default.
- W3021820897 cites W2059784307 @default.
- W3021820897 cites W2063213455 @default.
- W3021820897 cites W2066459155 @default.
- W3021820897 cites W2071472234 @default.
- W3021820897 cites W2079563759 @default.
- W3021820897 cites W2081940622 @default.
- W3021820897 cites W2107915383 @default.
- W3021820897 cites W2107956652 @default.
- W3021820897 cites W2116823839 @default.
- W3021820897 cites W2122752532 @default.
- W3021820897 cites W2132465749 @default.
- W3021820897 cites W2144783994 @default.
- W3021820897 cites W2162764399 @default.
- W3021820897 cites W2169507481 @default.
- W3021820897 cites W2171134880 @default.
- W3021820897 cites W2177917702 @default.
- W3021820897 cites W2340607324 @default.
- W3021820897 cites W2484283047 @default.
- W3021820897 cites W2508085600 @default.
- W3021820897 cites W2508982726 @default.
- W3021820897 cites W2523445319 @default.
- W3021820897 cites W2528727157 @default.
- W3021820897 cites W2550149646 @default.
- W3021820897 cites W2593343929 @default.
- W3021820897 cites W2596468823 @default.
- W3021820897 cites W2614895229 @default.
- W3021820897 cites W2728586154 @default.
- W3021820897 cites W2736801453 @default.
- W3021820897 cites W2755342898 @default.
- W3021820897 cites W2755595323 @default.
- W3021820897 cites W2766598886 @default.
- W3021820897 cites W2770468851 @default.
- W3021820897 cites W2789280620 @default.
- W3021820897 cites W2791373308 @default.
- W3021820897 cites W2795442880 @default.
- W3021820897 cites W2797728878 @default.
- W3021820897 cites W2798240981 @default.
- W3021820897 cites W2807890789 @default.
- W3021820897 cites W2887206520 @default.
- W3021820897 cites W2890639228 @default.
- W3021820897 cites W2892953788 @default.
- W3021820897 cites W2896585601 @default.
- W3021820897 cites W2906653747 @default.
- W3021820897 cites W2910017905 @default.
- W3021820897 cites W291418382 @default.
- W3021820897 cites W2914537428 @default.
- W3021820897 cites W2951032685 @default.
- W3021820897 cites W2962946304 @default.
- W3021820897 cites W2963039650 @default.
- W3021820897 cites W2963731031 @default.
- W3021820897 cites W2963780177 @default.
- W3021820897 cites W2963973365 @default.
- W3021820897 cites W2964044082 @default.
- W3021820897 cites W3003291611 @default.
- W3021820897 cites W3102567422 @default.
- W3021820897 cites W4210998205 @default.
- W3021820897 cites W4211245039 @default.
- W3021820897 cites W621744988 @default.
- W3021820897 cites W838115849 @default.
- W3021820897 doi "https://doi.org/10.1016/j.neuroimage.2020.116884" @default.
- W3021820897 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7378937" @default.
- W3021820897 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32360689" @default.
- W3021820897 hasPublicationYear "2020" @default.
- W3021820897 type Work @default.
- W3021820897 sameAs 3021820897 @default.
- W3021820897 citedByCount "29" @default.
- W3021820897 countsByYear W30218208972020 @default.