Matches in SemOpenAlex for { <https://semopenalex.org/work/W3021825627> ?p ?o ?g. }
- W3021825627 abstract "Data-space inversion (DSI) and related procedures represent a family of methods applicable for data assimilation in subsurface flow settings. These methods differ from model-based techniques in that they provide only posterior predictions for quantities (time series) of interest, not posterior models with calibrated parameters. DSI methods require a large number of flow simulations to first be performed on prior geological realizations. Given observed data, posterior predictions can then be generated directly. DSI operates in a Bayesian setting and provides posterior samples of the data vector. In this work we develop and evaluate a new approach for data parameterization in DSI. Parameterization reduces the number of variables to determine in the inversion, and it maintains the physical character of the data variables. The new parameterization uses a recurrent autoencoder (RAE) for dimension reduction, and a long-short-term memory (LSTM) network to represent flow-rate time series. The RAE-based parameterization is combined with an ensemble smoother with multiple data assimilation (ESMDA) for posterior generation. Results are presented for two- and three-phase flow in a 2D channelized system and a 3D multi-Gaussian model. The RAE procedure, along with existing DSI treatments, are assessed through comparison to reference rejection sampling (RS) results. The new DSI methodology is shown to consistently outperform existing approaches, in terms of statistical agreement with RS results. The method is also shown to accurately capture derived quantities, which are computed from variables considered directly in DSI. This requires correlation and covariance between variables to be properly captured, and accuracy in these relationships is demonstrated. The RAE-based parameterization developed here is clearly useful in DSI, and it may also find application in other subsurface flow problems." @default.
- W3021825627 created "2020-05-13" @default.
- W3021825627 creator A5002057296 @default.
- W3021825627 creator A5013882172 @default.
- W3021825627 date "2020-04-30" @default.
- W3021825627 modified "2023-10-16" @default.
- W3021825627 title "Data-Space Inversion Using a Recurrent Autoencoder for Time-Series Parameterization" @default.
- W3021825627 cites W1522301498 @default.
- W3021825627 cites W1778389879 @default.
- W3021825627 cites W1989411673 @default.
- W3021825627 cites W2004124997 @default.
- W3021825627 cites W2018353504 @default.
- W3021825627 cites W2024330397 @default.
- W3021825627 cites W2031172850 @default.
- W3021825627 cites W2040658407 @default.
- W3021825627 cites W2058051865 @default.
- W3021825627 cites W2064675550 @default.
- W3021825627 cites W2100495367 @default.
- W3021825627 cites W2122538988 @default.
- W3021825627 cites W2148411410 @default.
- W3021825627 cites W2436686040 @default.
- W3021825627 cites W2519996514 @default.
- W3021825627 cites W2574572704 @default.
- W3021825627 cites W2581526618 @default.
- W3021825627 cites W2581984441 @default.
- W3021825627 cites W2600422184 @default.
- W3021825627 cites W2606759614 @default.
- W3021825627 cites W2750454216 @default.
- W3021825627 cites W2762902720 @default.
- W3021825627 cites W2899187130 @default.
- W3021825627 cites W2906141267 @default.
- W3021825627 cites W2916289860 @default.
- W3021825627 cites W2943227802 @default.
- W3021825627 cites W2950337752 @default.
- W3021825627 cites W2950752421 @default.
- W3021825627 cites W2958042318 @default.
- W3021825627 cites W2962707484 @default.
- W3021825627 cites W2963162215 @default.
- W3021825627 cites W2995015263 @default.
- W3021825627 cites W2999802832 @default.
- W3021825627 cites W3010021872 @default.
- W3021825627 cites W3098024297 @default.
- W3021825627 cites W3123551284 @default.
- W3021825627 doi "https://doi.org/10.48550/arxiv.2005.00061" @default.
- W3021825627 hasPublicationYear "2020" @default.
- W3021825627 type Work @default.
- W3021825627 sameAs 3021825627 @default.
- W3021825627 citedByCount "0" @default.
- W3021825627 crossrefType "posted-content" @default.
- W3021825627 hasAuthorship W3021825627A5002057296 @default.
- W3021825627 hasAuthorship W3021825627A5013882172 @default.
- W3021825627 hasBestOaLocation W30218256271 @default.
- W3021825627 hasConcept C101738243 @default.
- W3021825627 hasConcept C105795698 @default.
- W3021825627 hasConcept C107673813 @default.
- W3021825627 hasConcept C109007969 @default.
- W3021825627 hasConcept C11413529 @default.
- W3021825627 hasConcept C121332964 @default.
- W3021825627 hasConcept C127313418 @default.
- W3021825627 hasConcept C151730666 @default.
- W3021825627 hasConcept C153294291 @default.
- W3021825627 hasConcept C154945302 @default.
- W3021825627 hasConcept C163716315 @default.
- W3021825627 hasConcept C178650346 @default.
- W3021825627 hasConcept C1893757 @default.
- W3021825627 hasConcept C24552861 @default.
- W3021825627 hasConcept C33923547 @default.
- W3021825627 hasConcept C41008148 @default.
- W3021825627 hasConcept C50644808 @default.
- W3021825627 hasConcept C57830394 @default.
- W3021825627 hasConcept C62520636 @default.
- W3021825627 hasConceptScore W3021825627C101738243 @default.
- W3021825627 hasConceptScore W3021825627C105795698 @default.
- W3021825627 hasConceptScore W3021825627C107673813 @default.
- W3021825627 hasConceptScore W3021825627C109007969 @default.
- W3021825627 hasConceptScore W3021825627C11413529 @default.
- W3021825627 hasConceptScore W3021825627C121332964 @default.
- W3021825627 hasConceptScore W3021825627C127313418 @default.
- W3021825627 hasConceptScore W3021825627C151730666 @default.
- W3021825627 hasConceptScore W3021825627C153294291 @default.
- W3021825627 hasConceptScore W3021825627C154945302 @default.
- W3021825627 hasConceptScore W3021825627C163716315 @default.
- W3021825627 hasConceptScore W3021825627C178650346 @default.
- W3021825627 hasConceptScore W3021825627C1893757 @default.
- W3021825627 hasConceptScore W3021825627C24552861 @default.
- W3021825627 hasConceptScore W3021825627C33923547 @default.
- W3021825627 hasConceptScore W3021825627C41008148 @default.
- W3021825627 hasConceptScore W3021825627C50644808 @default.
- W3021825627 hasConceptScore W3021825627C57830394 @default.
- W3021825627 hasConceptScore W3021825627C62520636 @default.
- W3021825627 hasLocation W30218256271 @default.
- W3021825627 hasOpenAccess W3021825627 @default.
- W3021825627 hasPrimaryLocation W30218256271 @default.
- W3021825627 hasRelatedWork W11373232 @default.
- W3021825627 hasRelatedWork W13706206 @default.
- W3021825627 hasRelatedWork W14866620 @default.
- W3021825627 hasRelatedWork W1875594 @default.
- W3021825627 hasRelatedWork W2468148 @default.
- W3021825627 hasRelatedWork W3974698 @default.
- W3021825627 hasRelatedWork W5116624 @default.