Matches in SemOpenAlex for { <https://semopenalex.org/work/W3021946670> ?p ?o ?g. }
- W3021946670 endingPage "3132" @default.
- W3021946670 startingPage "3132" @default.
- W3021946670 abstract "Subspace system identification is a class of methods to estimate state-space model based on low rank characteristic of a system. State-space-based subspace system identification is the dominant subspace method for system identification in health monitoring of the civil structures. The weight matrices of canonical variate analysis (CVA), principle component (PC), and unweighted principle component (UPC), are used in stochastic subspace identification (SSI) to reduce the complexity and optimize the prediction in identification process. However, researches on evaluation and comparison of weight matrices’ performance are very limited. This study provides a detailed analysis on the effect of different weight matrices on robustness, accuracy, and computation efficiency. Two case studies including a lumped mass system and the response dataset of the Alamosa Canyon Bridge are used in this study. The results demonstrated that UPC algorithm had better performance compared to two other algorithms. It can be concluded that though dimensionality reduction in PC and CVA lingered the computation time, it has yielded an improved modal identification in PC." @default.
- W3021946670 created "2020-05-13" @default.
- W3021946670 creator A5017060081 @default.
- W3021946670 creator A5035141653 @default.
- W3021946670 creator A5049357575 @default.
- W3021946670 creator A5068992632 @default.
- W3021946670 creator A5076746396 @default.
- W3021946670 date "2020-04-30" @default.
- W3021946670 modified "2023-09-30" @default.
- W3021946670 title "A Comparative Study of the Data-Driven Stochastic Subspace Methods for Health Monitoring of Structures: A Bridge Case Study" @default.
- W3021946670 cites W1968084478 @default.
- W3021946670 cites W1972573574 @default.
- W3021946670 cites W1977220071 @default.
- W3021946670 cites W1979287391 @default.
- W3021946670 cites W1980582803 @default.
- W3021946670 cites W1991224372 @default.
- W3021946670 cites W1995899078 @default.
- W3021946670 cites W1998328548 @default.
- W3021946670 cites W2006609433 @default.
- W3021946670 cites W2017250258 @default.
- W3021946670 cites W2021609073 @default.
- W3021946670 cites W2034487019 @default.
- W3021946670 cites W2040535706 @default.
- W3021946670 cites W2044138680 @default.
- W3021946670 cites W2045706277 @default.
- W3021946670 cites W2058084172 @default.
- W3021946670 cites W2085739148 @default.
- W3021946670 cites W2118491539 @default.
- W3021946670 cites W2130175225 @default.
- W3021946670 cites W2331207552 @default.
- W3021946670 cites W2594495045 @default.
- W3021946670 cites W2615499907 @default.
- W3021946670 cites W2745020392 @default.
- W3021946670 cites W2750595957 @default.
- W3021946670 cites W2773084297 @default.
- W3021946670 cites W2776772340 @default.
- W3021946670 cites W2778090401 @default.
- W3021946670 cites W2778252773 @default.
- W3021946670 cites W2968144715 @default.
- W3021946670 cites W2969926982 @default.
- W3021946670 cites W2981579199 @default.
- W3021946670 cites W2981799400 @default.
- W3021946670 cites W2989357304 @default.
- W3021946670 cites W2998226996 @default.
- W3021946670 cites W3002664851 @default.
- W3021946670 cites W3013979425 @default.
- W3021946670 cites W3014983680 @default.
- W3021946670 cites W3020420601 @default.
- W3021946670 cites W3033190733 @default.
- W3021946670 cites W3036887137 @default.
- W3021946670 doi "https://doi.org/10.3390/app10093132" @default.
- W3021946670 hasPublicationYear "2020" @default.
- W3021946670 type Work @default.
- W3021946670 sameAs 3021946670 @default.
- W3021946670 citedByCount "15" @default.
- W3021946670 countsByYear W30219466702020 @default.
- W3021946670 countsByYear W30219466702021 @default.
- W3021946670 countsByYear W30219466702022 @default.
- W3021946670 countsByYear W30219466702023 @default.
- W3021946670 crossrefType "journal-article" @default.
- W3021946670 hasAuthorship W3021946670A5017060081 @default.
- W3021946670 hasAuthorship W3021946670A5035141653 @default.
- W3021946670 hasAuthorship W3021946670A5049357575 @default.
- W3021946670 hasAuthorship W3021946670A5068992632 @default.
- W3021946670 hasAuthorship W3021946670A5076746396 @default.
- W3021946670 hasBestOaLocation W30219466701 @default.
- W3021946670 hasConcept C104317684 @default.
- W3021946670 hasConcept C111030470 @default.
- W3021946670 hasConcept C11413529 @default.
- W3021946670 hasConcept C114614502 @default.
- W3021946670 hasConcept C116834253 @default.
- W3021946670 hasConcept C119247159 @default.
- W3021946670 hasConcept C124101348 @default.
- W3021946670 hasConcept C154945302 @default.
- W3021946670 hasConcept C164226766 @default.
- W3021946670 hasConcept C185592680 @default.
- W3021946670 hasConcept C188027245 @default.
- W3021946670 hasConcept C2780009758 @default.
- W3021946670 hasConcept C32834561 @default.
- W3021946670 hasConcept C33923547 @default.
- W3021946670 hasConcept C41008148 @default.
- W3021946670 hasConcept C45374587 @default.
- W3021946670 hasConcept C55493867 @default.
- W3021946670 hasConcept C59822182 @default.
- W3021946670 hasConcept C63479239 @default.
- W3021946670 hasConcept C70518039 @default.
- W3021946670 hasConcept C71139939 @default.
- W3021946670 hasConcept C86803240 @default.
- W3021946670 hasConceptScore W3021946670C104317684 @default.
- W3021946670 hasConceptScore W3021946670C111030470 @default.
- W3021946670 hasConceptScore W3021946670C11413529 @default.
- W3021946670 hasConceptScore W3021946670C114614502 @default.
- W3021946670 hasConceptScore W3021946670C116834253 @default.
- W3021946670 hasConceptScore W3021946670C119247159 @default.
- W3021946670 hasConceptScore W3021946670C124101348 @default.
- W3021946670 hasConceptScore W3021946670C154945302 @default.
- W3021946670 hasConceptScore W3021946670C164226766 @default.
- W3021946670 hasConceptScore W3021946670C185592680 @default.