Matches in SemOpenAlex for { <https://semopenalex.org/work/W3021980948> ?p ?o ?g. }
- W3021980948 endingPage "101733" @default.
- W3021980948 startingPage "101733" @default.
- W3021980948 abstract "Fully-automated segmentation of pathological shoulder muscles in patients with musculo-skeletal diseases is a challenging task due to the huge variability in muscle shape, size, location, texture and injury. A reliable automatic segmentation method from magnetic resonance images could greatly help clinicians to diagnose pathologies, plan therapeutic interventions and predict interventional outcomes while eliminating time consuming manual segmentation. The purpose of this work is three-fold. First, we investigate the feasibility of automatic pathological shoulder muscle segmentation using deep learning techniques, given a very limited amount of available annotated pediatric data. Second, we address the learning transferability from healthy to pathological data by comparing different learning schemes in terms of model generalizability. Third, extended versions of deep convolutional encoder-decoder architectures using encoders pre-trained on non-medical data are proposed to improve the segmentation accuracy. Methodological aspects are evaluated in a leave-one-out fashion on a dataset of 24 shoulder examinations from patients with unilateral obstetrical brachial plexus palsy and focus on 4 rotator cuff muscles (deltoid, infraspinatus, supraspinatus and subscapularis). The most accurate segmentation model is partially pre-trained on the large-scale ImageNet dataset and jointly exploits inter-patient healthy and pathological annotated data. Its performance reaches Dice scores of 82.4%, 82.0%, 71.0% and 82.8% for deltoid, infraspinatus, supraspinatus and subscapularis muscles. Absolute surface estimation errors are all below 83 mm2 except for supraspinatus with 134.6 mm2. The contributions of our work offer new avenues for inferring force from muscle volume in the context of musculo-skeletal disorder management." @default.
- W3021980948 created "2020-05-13" @default.
- W3021980948 creator A5012042510 @default.
- W3021980948 creator A5040529738 @default.
- W3021980948 creator A5052536540 @default.
- W3021980948 creator A5056838963 @default.
- W3021980948 creator A5080093371 @default.
- W3021980948 date "2020-07-01" @default.
- W3021980948 modified "2023-10-02" @default.
- W3021980948 title "Healthy versus pathological learning transferability in shoulder muscle MRI segmentation using deep convolutional encoder-decoders" @default.
- W3021980948 cites W1573164764 @default.
- W3021980948 cites W1596801026 @default.
- W3021980948 cites W1976042334 @default.
- W3021980948 cites W1985263919 @default.
- W3021980948 cites W1986399714 @default.
- W3021980948 cites W1993422196 @default.
- W3021980948 cites W2006649418 @default.
- W3021980948 cites W2021464428 @default.
- W3021980948 cites W2021542826 @default.
- W3021980948 cites W2060476335 @default.
- W3021980948 cites W2098498529 @default.
- W3021980948 cites W2112796928 @default.
- W3021980948 cites W2117539524 @default.
- W3021980948 cites W2130373300 @default.
- W3021980948 cites W2168968682 @default.
- W3021980948 cites W2169508341 @default.
- W3021980948 cites W224278538 @default.
- W3021980948 cites W2299211235 @default.
- W3021980948 cites W2395611524 @default.
- W3021980948 cites W2561721030 @default.
- W3021980948 cites W2592929672 @default.
- W3021980948 cites W2737373222 @default.
- W3021980948 cites W2741974491 @default.
- W3021980948 cites W2744928093 @default.
- W3021980948 cites W2754599739 @default.
- W3021980948 cites W2903544590 @default.
- W3021980948 cites W2971013993 @default.
- W3021980948 cites W2998459048 @default.
- W3021980948 cites W3014795415 @default.
- W3021980948 cites W3021980948 @default.
- W3021980948 cites W74568156 @default.
- W3021980948 doi "https://doi.org/10.1016/j.compmedimag.2020.101733" @default.
- W3021980948 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32505943" @default.
- W3021980948 hasPublicationYear "2020" @default.
- W3021980948 type Work @default.
- W3021980948 sameAs 3021980948 @default.
- W3021980948 citedByCount "40" @default.
- W3021980948 countsByYear W30219809482020 @default.
- W3021980948 countsByYear W30219809482021 @default.
- W3021980948 countsByYear W30219809482022 @default.
- W3021980948 countsByYear W30219809482023 @default.
- W3021980948 crossrefType "journal-article" @default.
- W3021980948 hasAuthorship W3021980948A5012042510 @default.
- W3021980948 hasAuthorship W3021980948A5040529738 @default.
- W3021980948 hasAuthorship W3021980948A5052536540 @default.
- W3021980948 hasAuthorship W3021980948A5056838963 @default.
- W3021980948 hasAuthorship W3021980948A5080093371 @default.
- W3021980948 hasBestOaLocation W30219809481 @default.
- W3021980948 hasConcept C105702510 @default.
- W3021980948 hasConcept C108583219 @default.
- W3021980948 hasConcept C126838900 @default.
- W3021980948 hasConcept C137711082 @default.
- W3021980948 hasConcept C151730666 @default.
- W3021980948 hasConcept C153180895 @default.
- W3021980948 hasConcept C154945302 @default.
- W3021980948 hasConcept C2775885956 @default.
- W3021980948 hasConcept C2776511800 @default.
- W3021980948 hasConcept C2779343474 @default.
- W3021980948 hasConcept C41008148 @default.
- W3021980948 hasConcept C71924100 @default.
- W3021980948 hasConcept C81363708 @default.
- W3021980948 hasConcept C86803240 @default.
- W3021980948 hasConcept C89600930 @default.
- W3021980948 hasConceptScore W3021980948C105702510 @default.
- W3021980948 hasConceptScore W3021980948C108583219 @default.
- W3021980948 hasConceptScore W3021980948C126838900 @default.
- W3021980948 hasConceptScore W3021980948C137711082 @default.
- W3021980948 hasConceptScore W3021980948C151730666 @default.
- W3021980948 hasConceptScore W3021980948C153180895 @default.
- W3021980948 hasConceptScore W3021980948C154945302 @default.
- W3021980948 hasConceptScore W3021980948C2775885956 @default.
- W3021980948 hasConceptScore W3021980948C2776511800 @default.
- W3021980948 hasConceptScore W3021980948C2779343474 @default.
- W3021980948 hasConceptScore W3021980948C41008148 @default.
- W3021980948 hasConceptScore W3021980948C71924100 @default.
- W3021980948 hasConceptScore W3021980948C81363708 @default.
- W3021980948 hasConceptScore W3021980948C86803240 @default.
- W3021980948 hasConceptScore W3021980948C89600930 @default.
- W3021980948 hasLocation W30219809481 @default.
- W3021980948 hasLocation W30219809482 @default.
- W3021980948 hasLocation W30219809483 @default.
- W3021980948 hasLocation W30219809484 @default.
- W3021980948 hasLocation W30219809485 @default.
- W3021980948 hasLocation W30219809486 @default.
- W3021980948 hasOpenAccess W3021980948 @default.
- W3021980948 hasPrimaryLocation W30219809481 @default.
- W3021980948 hasRelatedWork W1978746875 @default.
- W3021980948 hasRelatedWork W2731899572 @default.