Matches in SemOpenAlex for { <https://semopenalex.org/work/W302200178> ?p ?o ?g. }
- W302200178 abstract "We describe a method for finding the non-Gaussian tails of probability distribution function (PDF) for solutions of stochastic differential equations, such as convection equation for a passive scalar, random driven Navier-Stokes equation etc. Existence of such tails is generally regarded as a manifestation of intermittency phenomenon. Our formalism is based on the WKB approximation in the functional integral for the conditional probability of a large fluctuation. Then the main contribution to the functional integral is given by a coupled field-force configuration — instanton. We argue that the tails of the single-point velocity probability distribution function (PDF) are generally non-Gaussian in developed turbulence. By using instanton formalism for the Navier-Stokes equation, we establish the relation between the PDF tails of the velocity and those of the external forcing. In particular, we show that a Gaussian random force having correlation scale L and correlation time τ produces velocity PDF tails ln (P(upsilon )alpha - {upsilon ^4}atupsilon gg {upsilon _{rms,}}L/tau ). For a short-correlated forcing when (tau ll L/{upsilon _{rms}}) there is an intermediate asymptotics ln (P(upsilon )alpha - {upsilon ^3}atL/tau gg upsilon gg {upsilon _{rms}}). We consider the tails of probability density function (PDF) for the velocity that satisfies Burgers equation driven by a Gaussian large-scale force. The instantonic calculations show that for the PDFs of velocity and its derivatives ({u^{(k)}} = partial _x^ku), the general formula is found: ln (P(|{u^{(k)}}|)alpha - {(|{u^{(k)}}|/{{mathop{rm Re}nolimits} ^k})^{3/(k + 1)}}). We consider high-order correlation functions of the passive scalar in the Kraichnan model. Using the instanton formalism we find the exponents ζn of the structure functions S n for (n gg ) 1 at the condition (d{zeta _2} gg 1) (where d is the dimensionality of space). At (n n c they are n-independent: ({zeta _n} = {zeta _2}{n_c}/4). Besides ζ n , we also estimate n-dependent factors in S n and critical behavior of S n at n close to n c" @default.
- W302200178 created "2016-06-24" @default.
- W302200178 creator A5005404492 @default.
- W302200178 date "1999-01-01" @default.
- W302200178 modified "2023-09-27" @default.
- W302200178 title "Instantons in the theory of turbulence" @default.
- W302200178 cites W1964167118 @default.
- W302200178 cites W1964467602 @default.
- W302200178 cites W1966725008 @default.
- W302200178 cites W1970031214 @default.
- W302200178 cites W1973771388 @default.
- W302200178 cites W1990056747 @default.
- W302200178 cites W1996476093 @default.
- W302200178 cites W1999015601 @default.
- W302200178 cites W2002861577 @default.
- W302200178 cites W2002869254 @default.
- W302200178 cites W2007588534 @default.
- W302200178 cites W2012067901 @default.
- W302200178 cites W2022623867 @default.
- W302200178 cites W2023833210 @default.
- W302200178 cites W2024688390 @default.
- W302200178 cites W2026972689 @default.
- W302200178 cites W2028148354 @default.
- W302200178 cites W2035857837 @default.
- W302200178 cites W2037780956 @default.
- W302200178 cites W2037830613 @default.
- W302200178 cites W2040712016 @default.
- W302200178 cites W2043963317 @default.
- W302200178 cites W2054126818 @default.
- W302200178 cites W2058327683 @default.
- W302200178 cites W2060652909 @default.
- W302200178 cites W2062311276 @default.
- W302200178 cites W2063562079 @default.
- W302200178 cites W2066045946 @default.
- W302200178 cites W2067732084 @default.
- W302200178 cites W2080717911 @default.
- W302200178 cites W2102288689 @default.
- W302200178 cites W2102901030 @default.
- W302200178 cites W2123234601 @default.
- W302200178 cites W2129956165 @default.
- W302200178 cites W2141674151 @default.
- W302200178 cites W2152077500 @default.
- W302200178 cites W2167500235 @default.
- W302200178 cites W2595974427 @default.
- W302200178 cites W4240986989 @default.
- W302200178 cites W4243066586 @default.
- W302200178 doi "https://doi.org/10.1007/978-3-0348-8689-5_28" @default.
- W302200178 hasPublicationYear "1999" @default.
- W302200178 type Work @default.
- W302200178 sameAs 302200178 @default.
- W302200178 citedByCount "0" @default.
- W302200178 crossrefType "book-chapter" @default.
- W302200178 hasAuthorship W302200178A5005404492 @default.
- W302200178 hasConcept C105795698 @default.
- W302200178 hasConcept C121332964 @default.
- W302200178 hasConcept C125198404 @default.
- W302200178 hasConcept C134306372 @default.
- W302200178 hasConcept C149441793 @default.
- W302200178 hasConcept C163716315 @default.
- W302200178 hasConcept C196558001 @default.
- W302200178 hasConcept C197055811 @default.
- W302200178 hasConcept C2524010 @default.
- W302200178 hasConcept C2780388094 @default.
- W302200178 hasConcept C33923547 @default.
- W302200178 hasConcept C37914503 @default.
- W302200178 hasConcept C57691317 @default.
- W302200178 hasConcept C62520636 @default.
- W302200178 hasConcept C97355855 @default.
- W302200178 hasConceptScore W302200178C105795698 @default.
- W302200178 hasConceptScore W302200178C121332964 @default.
- W302200178 hasConceptScore W302200178C125198404 @default.
- W302200178 hasConceptScore W302200178C134306372 @default.
- W302200178 hasConceptScore W302200178C149441793 @default.
- W302200178 hasConceptScore W302200178C163716315 @default.
- W302200178 hasConceptScore W302200178C196558001 @default.
- W302200178 hasConceptScore W302200178C197055811 @default.
- W302200178 hasConceptScore W302200178C2524010 @default.
- W302200178 hasConceptScore W302200178C2780388094 @default.
- W302200178 hasConceptScore W302200178C33923547 @default.
- W302200178 hasConceptScore W302200178C37914503 @default.
- W302200178 hasConceptScore W302200178C57691317 @default.
- W302200178 hasConceptScore W302200178C62520636 @default.
- W302200178 hasConceptScore W302200178C97355855 @default.
- W302200178 hasLocation W3022001781 @default.
- W302200178 hasOpenAccess W302200178 @default.
- W302200178 hasPrimaryLocation W3022001781 @default.
- W302200178 hasRelatedWork W1528939682 @default.
- W302200178 hasRelatedWork W1829946929 @default.
- W302200178 hasRelatedWork W1988678641 @default.
- W302200178 hasRelatedWork W2040301338 @default.
- W302200178 hasRelatedWork W2199927297 @default.
- W302200178 hasRelatedWork W2250826501 @default.
- W302200178 hasRelatedWork W2501507594 @default.
- W302200178 hasRelatedWork W2592506488 @default.
- W302200178 hasRelatedWork W2784276572 @default.
- W302200178 hasRelatedWork W2946304582 @default.
- W302200178 hasRelatedWork W2949068907 @default.
- W302200178 hasRelatedWork W2950583840 @default.
- W302200178 hasRelatedWork W2989498558 @default.
- W302200178 hasRelatedWork W3092862890 @default.