Matches in SemOpenAlex for { <https://semopenalex.org/work/W3022123975> ?p ?o ?g. }
- W3022123975 abstract "For 35 years, {it ab initio} molecular dynamics (AIMD) has been the method of choice for modeling complex atomistic phenomena from first principles. However, most AIMD applications are limited by computational cost to systems with thousands of atoms at most. We report that a machine learning-based simulation protocol (Deep Potential Molecular Dynamics), while retaining {it ab initio} accuracy, can simulate more than 1 nanosecond-long trajectory of over 100 million atoms per day, using a highly optimized code (GPU DeePMD-kit) on the Summit supercomputer. Our code can efficiently scale up to the entire Summit supercomputer, attaining $91$ PFLOPS in double precision ($45.5%$ of the peak) and {$162$/$275$ PFLOPS in mixed-single/half precision}. The great accomplishment of this work is that it opens the door to simulating unprecedented size and time scales with {it ab initio} accuracy. It also poses new challenges to the next-generation supercomputer for a better integration of machine learning and physical modeling." @default.
- W3022123975 created "2020-05-13" @default.
- W3022123975 creator A5005925476 @default.
- W3022123975 creator A5007841515 @default.
- W3022123975 creator A5015860750 @default.
- W3022123975 creator A5036650938 @default.
- W3022123975 creator A5043676563 @default.
- W3022123975 creator A5071854504 @default.
- W3022123975 creator A5076410530 @default.
- W3022123975 creator A5084854649 @default.
- W3022123975 date "2020-05-01" @default.
- W3022123975 modified "2023-09-23" @default.
- W3022123975 title "Pushing the limit of molecular dynamics with ab initio accuracy to 100 million atoms with machine learning" @default.
- W3022123975 cites W1548618691 @default.
- W3022123975 cites W1552285602 @default.
- W3022123975 cites W1666813058 @default.
- W3022123975 cites W1965305255 @default.
- W3022123975 cites W1972419859 @default.
- W3022123975 cites W1976849335 @default.
- W3022123975 cites W1983543277 @default.
- W3022123975 cites W2002735620 @default.
- W3022123975 cites W2003754173 @default.
- W3022123975 cites W2005069114 @default.
- W3022123975 cites W2012458244 @default.
- W3022123975 cites W2017585426 @default.
- W3022123975 cites W2019465613 @default.
- W3022123975 cites W2025444507 @default.
- W3022123975 cites W2029413789 @default.
- W3022123975 cites W2030976617 @default.
- W3022123975 cites W2032765250 @default.
- W3022123975 cites W2035720425 @default.
- W3022123975 cites W2041778475 @default.
- W3022123975 cites W2043628797 @default.
- W3022123975 cites W2046001409 @default.
- W3022123975 cites W2056608987 @default.
- W3022123975 cites W2056661808 @default.
- W3022123975 cites W2078047375 @default.
- W3022123975 cites W2083415705 @default.
- W3022123975 cites W2105540689 @default.
- W3022123975 cites W2116863377 @default.
- W3022123975 cites W2132262459 @default.
- W3022123975 cites W2147993766 @default.
- W3022123975 cites W2149655632 @default.
- W3022123975 cites W2155155530 @default.
- W3022123975 cites W2156597786 @default.
- W3022123975 cites W2163396412 @default.
- W3022123975 cites W2166116275 @default.
- W3022123975 cites W2230728100 @default.
- W3022123975 cites W2294620605 @default.
- W3022123975 cites W2333787883 @default.
- W3022123975 cites W2402144811 @default.
- W3022123975 cites W2410722695 @default.
- W3022123975 cites W2541404351 @default.
- W3022123975 cites W2585152223 @default.
- W3022123975 cites W2742127985 @default.
- W3022123975 cites W2760917849 @default.
- W3022123975 cites W2775708988 @default.
- W3022123975 cites W2788754178 @default.
- W3022123975 cites W2900369799 @default.
- W3022123975 cites W2914218087 @default.
- W3022123975 cites W2943133682 @default.
- W3022123975 cites W2944649260 @default.
- W3022123975 cites W2951845929 @default.
- W3022123975 cites W2963153792 @default.
- W3022123975 cites W2963373387 @default.
- W3022123975 cites W2963711743 @default.
- W3022123975 cites W2980902481 @default.
- W3022123975 cites W2983200159 @default.
- W3022123975 cites W2984947352 @default.
- W3022123975 cites W2990496605 @default.
- W3022123975 cites W2991683414 @default.
- W3022123975 cites W2997541858 @default.
- W3022123975 cites W3003966510 @default.
- W3022123975 cites W3004021778 @default.
- W3022123975 cites W3005610174 @default.
- W3022123975 cites W3006005697 @default.
- W3022123975 cites W3009065416 @default.
- W3022123975 cites W3019725847 @default.
- W3022123975 cites W3098509317 @default.
- W3022123975 cites W3101543398 @default.
- W3022123975 cites W3101568640 @default.
- W3022123975 cites W3101985406 @default.
- W3022123975 cites W3102423756 @default.
- W3022123975 cites W3102870719 @default.
- W3022123975 cites W3104742625 @default.
- W3022123975 doi "https://doi.org/10.48550/arxiv.2005.00223" @default.
- W3022123975 hasPublicationYear "2020" @default.
- W3022123975 type Work @default.
- W3022123975 sameAs 3022123975 @default.
- W3022123975 citedByCount "6" @default.
- W3022123975 countsByYear W30221239752020 @default.
- W3022123975 countsByYear W30221239752021 @default.
- W3022123975 countsByYear W30221239752022 @default.
- W3022123975 crossrefType "posted-content" @default.
- W3022123975 hasAuthorship W3022123975A5005925476 @default.
- W3022123975 hasAuthorship W3022123975A5007841515 @default.
- W3022123975 hasAuthorship W3022123975A5015860750 @default.
- W3022123975 hasAuthorship W3022123975A5036650938 @default.
- W3022123975 hasAuthorship W3022123975A5043676563 @default.
- W3022123975 hasAuthorship W3022123975A5071854504 @default.