Matches in SemOpenAlex for { <https://semopenalex.org/work/W3022126427> ?p ?o ?g. }
- W3022126427 endingPage "035020" @default.
- W3022126427 startingPage "035020" @default.
- W3022126427 abstract "Functional reconstruction of craniomaxillofacial defects is challenging, especially for the patients who suffer from traumatic injury, cranioplasty, and oncologic surgery. Three-dimensional (3D) printing/bioprinting technologies provide a promising tool to fabricate bone tissue engineering constructs with complex architectures and bioactive components. In this study, we implemented multi-material 3D printing to fabricate 3D printed PCL/hydrogel composite scaffolds loaded with dual bioactive small molecules (i.e. resveratrol and strontium ranelate). The incorporated small molecules are expected to target several types of bone cells. We systematically studied the scaffold morphologies and small molecule release profiles. We then investigated the effects of the released small molecules from the drug loaded scaffolds on the behavior and differentiation of mesenchymal stem cells (MSCs), monocyte-derived osteoclasts, and endothelial cells. The 3D printed scaffolds, with and without small molecules, were further implanted into a rat model with a critical-sized mandibular bone defect. We found that the bone scaffolds containing the dual small molecules had combinational advantages in enhancing angiogenesis and inhibiting osteoclast activities, and they synergistically promoted MSC osteogenic differentiation. The dual drug loaded scaffolds also significantly promoted in vivo mandibular bone formation after 8 week implantation. This work presents a 3D printing strategy to fabricate engineered bone constructs, which can likely be used as off-the-shelf products to promote craniomaxillofacial regeneration." @default.
- W3022126427 created "2020-05-13" @default.
- W3022126427 creator A5001166654 @default.
- W3022126427 creator A5002230831 @default.
- W3022126427 creator A5013163159 @default.
- W3022126427 creator A5016598187 @default.
- W3022126427 creator A5058905655 @default.
- W3022126427 creator A5062579973 @default.
- W3022126427 creator A5070577965 @default.
- W3022126427 creator A5074628661 @default.
- W3022126427 date "2020-06-12" @default.
- W3022126427 modified "2023-10-18" @default.
- W3022126427 title "3D printed composite scaffolds with dual small molecule delivery for mandibular bone regeneration" @default.
- W3022126427 cites W1245164586 @default.
- W3022126427 cites W1947654286 @default.
- W3022126427 cites W1970144926 @default.
- W3022126427 cites W1976661118 @default.
- W3022126427 cites W1982863620 @default.
- W3022126427 cites W1986715280 @default.
- W3022126427 cites W1987546158 @default.
- W3022126427 cites W1991912822 @default.
- W3022126427 cites W2007310752 @default.
- W3022126427 cites W2015905988 @default.
- W3022126427 cites W2016512962 @default.
- W3022126427 cites W2017545194 @default.
- W3022126427 cites W2026158613 @default.
- W3022126427 cites W2027983210 @default.
- W3022126427 cites W2029264336 @default.
- W3022126427 cites W2034555062 @default.
- W3022126427 cites W2055549058 @default.
- W3022126427 cites W2060826509 @default.
- W3022126427 cites W2071962830 @default.
- W3022126427 cites W2072802398 @default.
- W3022126427 cites W2076725548 @default.
- W3022126427 cites W2077648724 @default.
- W3022126427 cites W2089597799 @default.
- W3022126427 cites W2090843336 @default.
- W3022126427 cites W2146299356 @default.
- W3022126427 cites W2153139452 @default.
- W3022126427 cites W2155554171 @default.
- W3022126427 cites W2157956984 @default.
- W3022126427 cites W2161253076 @default.
- W3022126427 cites W2172194489 @default.
- W3022126427 cites W2282869468 @default.
- W3022126427 cites W2298517146 @default.
- W3022126427 cites W2306517423 @default.
- W3022126427 cites W2405983659 @default.
- W3022126427 cites W2416983805 @default.
- W3022126427 cites W2417920665 @default.
- W3022126427 cites W2422189810 @default.
- W3022126427 cites W2442534000 @default.
- W3022126427 cites W2463024574 @default.
- W3022126427 cites W2468938755 @default.
- W3022126427 cites W2556367179 @default.
- W3022126427 cites W2563549619 @default.
- W3022126427 cites W2589429560 @default.
- W3022126427 cites W2597635431 @default.
- W3022126427 cites W2598269542 @default.
- W3022126427 cites W2600180123 @default.
- W3022126427 cites W2612164042 @default.
- W3022126427 cites W2617503479 @default.
- W3022126427 cites W2755275555 @default.
- W3022126427 cites W2758147319 @default.
- W3022126427 cites W2765609819 @default.
- W3022126427 cites W2769742930 @default.
- W3022126427 cites W2790623238 @default.
- W3022126427 cites W2794024582 @default.
- W3022126427 cites W2807971858 @default.
- W3022126427 cites W2809110970 @default.
- W3022126427 cites W2887534798 @default.
- W3022126427 cites W2888551967 @default.
- W3022126427 cites W2889806630 @default.
- W3022126427 cites W2892675413 @default.
- W3022126427 cites W2898462486 @default.
- W3022126427 cites W2901604183 @default.
- W3022126427 cites W2901631924 @default.
- W3022126427 cites W2905164087 @default.
- W3022126427 cites W2906715154 @default.
- W3022126427 cites W2909213904 @default.
- W3022126427 cites W2912695630 @default.
- W3022126427 cites W2914601288 @default.
- W3022126427 cites W2915026764 @default.
- W3022126427 cites W2918877780 @default.
- W3022126427 cites W2921337312 @default.
- W3022126427 cites W2926367219 @default.
- W3022126427 cites W2946042365 @default.
- W3022126427 cites W2948725579 @default.
- W3022126427 cites W2966808367 @default.
- W3022126427 cites W2968306640 @default.
- W3022126427 cites W2980813799 @default.
- W3022126427 cites W2997996048 @default.
- W3022126427 cites W84591927 @default.
- W3022126427 doi "https://doi.org/10.1088/1758-5090/ab906e" @default.
- W3022126427 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8059098" @default.
- W3022126427 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32369796" @default.
- W3022126427 hasPublicationYear "2020" @default.
- W3022126427 type Work @default.
- W3022126427 sameAs 3022126427 @default.