Matches in SemOpenAlex for { <https://semopenalex.org/work/W3022145812> ?p ?o ?g. }
- W3022145812 abstract "Abstract Infectious disease outbreaks pose a significant threat to human health worldwide. The outbreak of pandemic coronavirus disease 2019 (COVID-2019) has caused a global health emergency. Identification of regions with high risk for COVID-19 outbreak is a major priority of the governmental organizations and epidemiologists worldwide. The aims of the present study were to analyze the risk factors of coronavirus outbreak and identify areas with a high risk of human infection with virus in Fars Province, Iran. A geographic information system (GIS)-based machine learning algorithm (MLA), support vector machine (SVM), was used for the assessment of the outbreak risk of COVID-19 in Fars Province, Iran. The daily observations of infected cases was tested in the third-degree polynomial and the autoregressive and moving average (ARMA) models to examine the patterns of virus infestation in the province and in Iran. The results of disease outbreak in Iran were compared with the data for Iran and the world. Sixteen effective factors including minimum temperature of coldest month (MTCM), maximum temperature of warmest month (MTWM), precipitation in wettest month (PWM), precipitation of driest month (PDM), distance from roads, distance from mosques, distance from hospitals, distance from fuel stations, human footprint, density of cities, distance from bus stations, distance from banks, distance from bakeries, distance from attraction sites, distance from automated teller machines (ATMs), and density of villages – were selected for spatial modelling. The predictive ability of an SVM model was assessed using the receiver operator characteristic – area under the curve (ROC-AUC) validation technique. The validation outcome reveals that SVM achieved an AUC value of 0.786 (March 20), 0.799 (March 29), and 86.6 (April 10) a good prediction of change detection. The growth rate (GR) average for active cases in Fars for a period of 41 days was 1.26, whilst it was 1.13 in country and the world. The results of the third-degree polynomial and ARMA models revealed an increasing trend for GR with an evidence of turning, demonstrating extensive quarantines has been effective. The general trends of virus infestation in Iran and Fars Province were similar, although an explosive growth of the infected cases is expected in the country. The results of this study might assist better programming COVID-19 disease prevention and control and gaining sorts of predictive capability would have wide-ranging benefits." @default.
- W3022145812 created "2020-05-13" @default.
- W3022145812 creator A5006705342 @default.
- W3022145812 creator A5007185667 @default.
- W3022145812 creator A5031747582 @default.
- W3022145812 creator A5035879479 @default.
- W3022145812 creator A5062128630 @default.
- W3022145812 creator A5088476444 @default.
- W3022145812 creator A5089904162 @default.
- W3022145812 date "2020-04-30" @default.
- W3022145812 modified "2023-10-16" @default.
- W3022145812 title "Assessment of the outbreak risk, mapping and infestation behavior of COVID-19: Application of the autoregressive and moving average (ARMA) and polynomial models" @default.
- W3022145812 cites W1966503239 @default.
- W3022145812 cites W1980309802 @default.
- W3022145812 cites W1983233576 @default.
- W3022145812 cites W2008855189 @default.
- W3022145812 cites W2023203753 @default.
- W3022145812 cites W2149298154 @default.
- W3022145812 cites W2149684865 @default.
- W3022145812 cites W2154808693 @default.
- W3022145812 cites W2158441268 @default.
- W3022145812 cites W2468184985 @default.
- W3022145812 cites W2523213393 @default.
- W3022145812 cites W2580219088 @default.
- W3022145812 cites W2769346528 @default.
- W3022145812 cites W2789555074 @default.
- W3022145812 cites W2801974413 @default.
- W3022145812 cites W2803619479 @default.
- W3022145812 cites W2803877645 @default.
- W3022145812 cites W2808812311 @default.
- W3022145812 cites W2896791226 @default.
- W3022145812 cites W2911688499 @default.
- W3022145812 cites W2920548804 @default.
- W3022145812 cites W2939102671 @default.
- W3022145812 cites W2944366268 @default.
- W3022145812 cites W2985526038 @default.
- W3022145812 cites W2993767981 @default.
- W3022145812 cites W3001118548 @default.
- W3022145812 cites W3003668884 @default.
- W3022145812 cites W3006834170 @default.
- W3022145812 cites W3006914768 @default.
- W3022145812 cites W3007300585 @default.
- W3022145812 cites W3007470533 @default.
- W3022145812 cites W3008924545 @default.
- W3022145812 cites W3009003996 @default.
- W3022145812 cites W3010223921 @default.
- W3022145812 cites W3010267415 @default.
- W3022145812 cites W3011127608 @default.
- W3022145812 cites W3011242477 @default.
- W3022145812 cites W3011314536 @default.
- W3022145812 cites W3012309484 @default.
- W3022145812 cites W3012603648 @default.
- W3022145812 cites W3012769470 @default.
- W3022145812 cites W3012899771 @default.
- W3022145812 cites W3013306393 @default.
- W3022145812 cites W3013371964 @default.
- W3022145812 cites W4246883244 @default.
- W3022145812 cites W4255455317 @default.
- W3022145812 doi "https://doi.org/10.1101/2020.04.28.20083998" @default.
- W3022145812 hasPublicationYear "2020" @default.
- W3022145812 type Work @default.
- W3022145812 sameAs 3022145812 @default.
- W3022145812 citedByCount "3" @default.
- W3022145812 countsByYear W30221458122021 @default.
- W3022145812 countsByYear W30221458122023 @default.
- W3022145812 crossrefType "posted-content" @default.
- W3022145812 hasAuthorship W3022145812A5006705342 @default.
- W3022145812 hasAuthorship W3022145812A5007185667 @default.
- W3022145812 hasAuthorship W3022145812A5031747582 @default.
- W3022145812 hasAuthorship W3022145812A5035879479 @default.
- W3022145812 hasAuthorship W3022145812A5062128630 @default.
- W3022145812 hasAuthorship W3022145812A5088476444 @default.
- W3022145812 hasAuthorship W3022145812A5089904162 @default.
- W3022145812 hasBestOaLocation W30221458121 @default.
- W3022145812 hasConcept C105795698 @default.
- W3022145812 hasConcept C116675565 @default.
- W3022145812 hasConcept C142724271 @default.
- W3022145812 hasConcept C159047783 @default.
- W3022145812 hasConcept C205649164 @default.
- W3022145812 hasConcept C2779134260 @default.
- W3022145812 hasConcept C3008058167 @default.
- W3022145812 hasConcept C33923547 @default.
- W3022145812 hasConcept C524204448 @default.
- W3022145812 hasConcept C58640448 @default.
- W3022145812 hasConcept C71924100 @default.
- W3022145812 hasConcept C89623803 @default.
- W3022145812 hasConcept C99454951 @default.
- W3022145812 hasConceptScore W3022145812C105795698 @default.
- W3022145812 hasConceptScore W3022145812C116675565 @default.
- W3022145812 hasConceptScore W3022145812C142724271 @default.
- W3022145812 hasConceptScore W3022145812C159047783 @default.
- W3022145812 hasConceptScore W3022145812C205649164 @default.
- W3022145812 hasConceptScore W3022145812C2779134260 @default.
- W3022145812 hasConceptScore W3022145812C3008058167 @default.
- W3022145812 hasConceptScore W3022145812C33923547 @default.
- W3022145812 hasConceptScore W3022145812C524204448 @default.
- W3022145812 hasConceptScore W3022145812C58640448 @default.
- W3022145812 hasConceptScore W3022145812C71924100 @default.
- W3022145812 hasConceptScore W3022145812C89623803 @default.
- W3022145812 hasConceptScore W3022145812C99454951 @default.