Matches in SemOpenAlex for { <https://semopenalex.org/work/W3022184925> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W3022184925 abstract "The automatic identification and classification of image-based weld defects is a difficult task due to the complex texture of the X-ray images of the weld defect. Several depth learning methods for automatically identifying welds were proposed and tested. In this work, four different depth convolutional neural networks were evaluated and compared on the 1631 image set. The concavity, undercut, bar defects, circular defects, unfused defects and incomplete penetration in the weld image 6 different types of defects are classified. Another contribution of this paper is to train a CNN model RayNet for the dataset from scratch. In the experiment part, the parameters of convolution operation are compared and analyzed, in which the experimental part performs a comparative analysis of various parameters in the convolution operation, compares the size of the input image, gives the classification results for each defect, and finally shows the partial feature map during feature extraction with the classification accuracy reaching 96.5%, which is 6.6% higher than the classification accuracy of other existing fine-tuned models, and even improves the classification accuracy compared with the traditional image processing methods, and also proves that the model trained from scratch also has a good performance on small-scale data sets. Our proposed method can assist the evaluators in classifying pipeline welding defects." @default.
- W3022184925 created "2020-05-13" @default.
- W3022184925 date "2020-03-31" @default.
- W3022184925 modified "2023-09-24" @default.
- W3022184925 title "Oil Pipeline Weld Defect Identification System Based on Convolutional Neural Network" @default.
- W3022184925 cites W1968405583 @default.
- W3022184925 cites W1976644809 @default.
- W3022184925 cites W1979804891 @default.
- W3022184925 cites W2112796928 @default.
- W3022184925 cites W2141697870 @default.
- W3022184925 cites W2145997357 @default.
- W3022184925 cites W2163598482 @default.
- W3022184925 cites W2520271149 @default.
- W3022184925 cites W2546410677 @default.
- W3022184925 cites W2590402370 @default.
- W3022184925 cites W2621119428 @default.
- W3022184925 cites W2754729084 @default.
- W3022184925 cites W2777712566 @default.
- W3022184925 cites W2790377046 @default.
- W3022184925 cites W2792527658 @default.
- W3022184925 cites W2800561367 @default.
- W3022184925 cites W2809504579 @default.
- W3022184925 cites W2811482466 @default.
- W3022184925 cites W2885353400 @default.
- W3022184925 cites W2886251736 @default.
- W3022184925 cites W2895319842 @default.
- W3022184925 cites W2897806204 @default.
- W3022184925 cites W2899372475 @default.
- W3022184925 cites W2915041319 @default.
- W3022184925 cites W2921587779 @default.
- W3022184925 cites W2941722321 @default.
- W3022184925 doi "https://doi.org/10.3837/tiis.2020.03.010" @default.
- W3022184925 hasPublicationYear "2020" @default.
- W3022184925 type Work @default.
- W3022184925 sameAs 3022184925 @default.
- W3022184925 citedByCount "1" @default.
- W3022184925 countsByYear W30221849252023 @default.
- W3022184925 crossrefType "journal-article" @default.
- W3022184925 hasBestOaLocation W30221849251 @default.
- W3022184925 hasConcept C111919701 @default.
- W3022184925 hasConcept C116834253 @default.
- W3022184925 hasConcept C153180895 @default.
- W3022184925 hasConcept C154945302 @default.
- W3022184925 hasConcept C41008148 @default.
- W3022184925 hasConcept C43521106 @default.
- W3022184925 hasConcept C59822182 @default.
- W3022184925 hasConcept C81363708 @default.
- W3022184925 hasConcept C86803240 @default.
- W3022184925 hasConceptScore W3022184925C111919701 @default.
- W3022184925 hasConceptScore W3022184925C116834253 @default.
- W3022184925 hasConceptScore W3022184925C153180895 @default.
- W3022184925 hasConceptScore W3022184925C154945302 @default.
- W3022184925 hasConceptScore W3022184925C41008148 @default.
- W3022184925 hasConceptScore W3022184925C43521106 @default.
- W3022184925 hasConceptScore W3022184925C59822182 @default.
- W3022184925 hasConceptScore W3022184925C81363708 @default.
- W3022184925 hasConceptScore W3022184925C86803240 @default.
- W3022184925 hasIssue "3" @default.
- W3022184925 hasLocation W30221849251 @default.
- W3022184925 hasOpenAccess W3022184925 @default.
- W3022184925 hasPrimaryLocation W30221849251 @default.
- W3022184925 hasRelatedWork W2175746458 @default.
- W3022184925 hasRelatedWork W2732542196 @default.
- W3022184925 hasRelatedWork W2738221750 @default.
- W3022184925 hasRelatedWork W2760085659 @default.
- W3022184925 hasRelatedWork W2767651786 @default.
- W3022184925 hasRelatedWork W2883200793 @default.
- W3022184925 hasRelatedWork W2912288872 @default.
- W3022184925 hasRelatedWork W2940661641 @default.
- W3022184925 hasRelatedWork W3012978760 @default.
- W3022184925 hasRelatedWork W3093612317 @default.
- W3022184925 hasVolume "14" @default.
- W3022184925 isParatext "false" @default.
- W3022184925 isRetracted "false" @default.
- W3022184925 magId "3022184925" @default.
- W3022184925 workType "article" @default.