Matches in SemOpenAlex for { <https://semopenalex.org/work/W3022201666> ?p ?o ?g. }
- W3022201666 endingPage "125862" @default.
- W3022201666 startingPage "125862" @default.
- W3022201666 abstract "Optimization of control parameters for plasma spraying process is of great importance in thermal spray technology development. Engineers may limit themselves to local optimal solution by considering countable potential design solutions when selecting the plasma spray parameters in practice. This work proposes one decision support model by employing convolutional neural network (CNN) to explore the suitability of preliminary design. The approach aims to help engineers select global optimal solution with short time and low labor cost by invoking the models' capability of extracting potential features of in-flight particle characteristics. Simulation results make it possible to analyze new spraying process and train the designed model under the condition of insufficient experience and data. Firstly, the distributions of particle status obtained from simulation results act as the input and the control parameters are the output. Secondly, the projections between the in-flight particles and the control parameters are built implicitly and analyzed through CNN models. Thirdly, we validate the statistical information of particle state distributions through visualizing the feature maps and filters. Finally, the trained CNN models are verified by the fitted Gaussian distributions with basically consistent results. By building projections of in-flight particles and control parameters, new entrants and apprentices are capable of deducing the control parameters with the help of the pre-trained CNN model, thus cutting down the threshold for new practitioners." @default.
- W3022201666 created "2020-05-13" @default.
- W3022201666 creator A5003759585 @default.
- W3022201666 creator A5018970288 @default.
- W3022201666 creator A5034119718 @default.
- W3022201666 creator A5036388641 @default.
- W3022201666 creator A5043679164 @default.
- W3022201666 date "2020-07-01" @default.
- W3022201666 modified "2023-10-11" @default.
- W3022201666 title "Prediction of control parameters corresponding to in-flight particles in atmospheric plasma spray employing convolutional neural networks" @default.
- W3022201666 cites W130649918 @default.
- W3022201666 cites W1498436455 @default.
- W3022201666 cites W1528667585 @default.
- W3022201666 cites W1964439091 @default.
- W3022201666 cites W1964888050 @default.
- W3022201666 cites W1969588982 @default.
- W3022201666 cites W1970419155 @default.
- W3022201666 cites W1970528206 @default.
- W3022201666 cites W1973185996 @default.
- W3022201666 cites W1976713126 @default.
- W3022201666 cites W1985047252 @default.
- W3022201666 cites W1989157010 @default.
- W3022201666 cites W1994005151 @default.
- W3022201666 cites W2001974639 @default.
- W3022201666 cites W2002125198 @default.
- W3022201666 cites W2006637930 @default.
- W3022201666 cites W2011674622 @default.
- W3022201666 cites W2012712229 @default.
- W3022201666 cites W2013219391 @default.
- W3022201666 cites W2013299082 @default.
- W3022201666 cites W2025909051 @default.
- W3022201666 cites W2029191077 @default.
- W3022201666 cites W2029206318 @default.
- W3022201666 cites W2029534657 @default.
- W3022201666 cites W2037651789 @default.
- W3022201666 cites W2038518234 @default.
- W3022201666 cites W2064328267 @default.
- W3022201666 cites W2076673432 @default.
- W3022201666 cites W2081221181 @default.
- W3022201666 cites W2082899420 @default.
- W3022201666 cites W2092991680 @default.
- W3022201666 cites W2100941955 @default.
- W3022201666 cites W2123358534 @default.
- W3022201666 cites W2136577210 @default.
- W3022201666 cites W2142277401 @default.
- W3022201666 cites W2188287458 @default.
- W3022201666 cites W2303291603 @default.
- W3022201666 cites W2462506088 @default.
- W3022201666 cites W2518493517 @default.
- W3022201666 cites W2562939451 @default.
- W3022201666 cites W2584135263 @default.
- W3022201666 cites W2586155783 @default.
- W3022201666 cites W26821811 @default.
- W3022201666 cites W2749666028 @default.
- W3022201666 cites W2760710953 @default.
- W3022201666 cites W2774011036 @default.
- W3022201666 cites W2777965033 @default.
- W3022201666 cites W2803170602 @default.
- W3022201666 cites W2809466866 @default.
- W3022201666 cites W2945274002 @default.
- W3022201666 cites W2963365957 @default.
- W3022201666 cites W2963580633 @default.
- W3022201666 cites W3099859964 @default.
- W3022201666 cites W4243880194 @default.
- W3022201666 cites W72632836 @default.
- W3022201666 doi "https://doi.org/10.1016/j.surfcoat.2020.125862" @default.
- W3022201666 hasPublicationYear "2020" @default.
- W3022201666 type Work @default.
- W3022201666 sameAs 3022201666 @default.
- W3022201666 citedByCount "22" @default.
- W3022201666 countsByYear W30222016662020 @default.
- W3022201666 countsByYear W30222016662021 @default.
- W3022201666 countsByYear W30222016662022 @default.
- W3022201666 countsByYear W30222016662023 @default.
- W3022201666 crossrefType "journal-article" @default.
- W3022201666 hasAuthorship W3022201666A5003759585 @default.
- W3022201666 hasAuthorship W3022201666A5018970288 @default.
- W3022201666 hasAuthorship W3022201666A5034119718 @default.
- W3022201666 hasAuthorship W3022201666A5036388641 @default.
- W3022201666 hasAuthorship W3022201666A5043679164 @default.
- W3022201666 hasConcept C111919701 @default.
- W3022201666 hasConcept C119857082 @default.
- W3022201666 hasConcept C154945302 @default.
- W3022201666 hasConcept C41008148 @default.
- W3022201666 hasConcept C50644808 @default.
- W3022201666 hasConcept C81363708 @default.
- W3022201666 hasConcept C98045186 @default.
- W3022201666 hasConceptScore W3022201666C111919701 @default.
- W3022201666 hasConceptScore W3022201666C119857082 @default.
- W3022201666 hasConceptScore W3022201666C154945302 @default.
- W3022201666 hasConceptScore W3022201666C41008148 @default.
- W3022201666 hasConceptScore W3022201666C50644808 @default.
- W3022201666 hasConceptScore W3022201666C81363708 @default.
- W3022201666 hasConceptScore W3022201666C98045186 @default.
- W3022201666 hasFunder F4320321001 @default.
- W3022201666 hasLocation W30222016661 @default.
- W3022201666 hasOpenAccess W3022201666 @default.
- W3022201666 hasPrimaryLocation W30222016661 @default.