Matches in SemOpenAlex for { <https://semopenalex.org/work/W3022204047> ?p ?o ?g. }
- W3022204047 endingPage "113043" @default.
- W3022204047 startingPage "113043" @default.
- W3022204047 abstract "Abstract Foam stability and the improvement of its transport from fracture to matrix have been two major issues in the field of foam injection into fractured petroleum reservoirs as an enhanced oil recovery (EOR) method. In the current study, we have stabilized CO2 foam using surface-modified silica nanoparticles. The modification of nanoparticles was performed using 3-aminopropyltriethoxysilane (APTES). They were characterized by the FTIR analysis and contact angle measurements. After that, foam generation and stability were investigated using static experiments. The experiments were performed at different concentrations of NPs (0.04 to 0.20 mass%), two concentrations of SDS (0.236 and 0.472 mass%), and in the presence and absence of MgCl2 salt. Additionally, the oil recovery and fracture-matrix transport properties of various injected fluids, including CO2 gas, surfactant solution, and NPs stabilized foams were investigated and compared using flooding experiments in a natively oil-wet, fractured micromodel. The results indicate that the surface modification of Silica using the APTES makes the nanoparticles more oil-wet in oil-water system and more gas-wet in air-water system. This, in turn, amplifies the migration of the modified Silica (MS) toward the water-gas interface and enhances the CO2 foam stability. The occurrence of this mechanism could be verified by foam stability experiments, where switching the foam stabilizer from Silica to MS nanoparticles led to a 33.3% increase in the maximum foam half-life. The foamability is not affected by the type of NPs; however, the foaminess is reduced due to the surface adsorption of SDS on the nanoparticle surfaces. Moreover, the stability of foams is reduced in the presence of Mg2+ ions. The reason is investigated utilizing the Mg2+ ion concentration measurements via the atomic adsorption method. Finally, the micromodel flooding indicates that the order of recovery enhancement potential of the CO2 foam stabilizers is SDS-MS > SDS-Silica>SDS. We will discuss the pore-scale phenomena, which lead to such results. We have found that during foam flow in the fractures, the large size bubbles act as viscose fluid and push the relatively smaller bubbles into the matrixes pores. This fracture-matrix transport is followed by the stable foams, and a foam bridge is formed between the fracture and matrix. Additionally, foam front is disintegrated into gas bubbles and water droplets containing surfactants and NPs, which can penetrate the dead-end pores and displace the oil in them through the formation of W/O emulsion." @default.
- W3022204047 created "2020-05-13" @default.
- W3022204047 creator A5042219961 @default.
- W3022204047 creator A5047197373 @default.
- W3022204047 creator A5052622672 @default.
- W3022204047 date "2020-08-01" @default.
- W3022204047 modified "2023-10-03" @default.
- W3022204047 title "Stabilizing CO2 foams using APTES surface-modified nanosilica: Foamability, foaminess, foam stability, and transport in oil-wet fractured porous media" @default.
- W3022204047 cites W1171175635 @default.
- W3022204047 cites W1543885239 @default.
- W3022204047 cites W1893675287 @default.
- W3022204047 cites W1966365224 @default.
- W3022204047 cites W1978704826 @default.
- W3022204047 cites W1980230260 @default.
- W3022204047 cites W1983950169 @default.
- W3022204047 cites W1986241950 @default.
- W3022204047 cites W1997568525 @default.
- W3022204047 cites W1999708443 @default.
- W3022204047 cites W2005043317 @default.
- W3022204047 cites W2013057962 @default.
- W3022204047 cites W2019842804 @default.
- W3022204047 cites W2020676108 @default.
- W3022204047 cites W2034995806 @default.
- W3022204047 cites W2041260831 @default.
- W3022204047 cites W2050115837 @default.
- W3022204047 cites W2052505421 @default.
- W3022204047 cites W2056035035 @default.
- W3022204047 cites W2057288653 @default.
- W3022204047 cites W2057396954 @default.
- W3022204047 cites W2058221485 @default.
- W3022204047 cites W2058294048 @default.
- W3022204047 cites W2061352195 @default.
- W3022204047 cites W2081774205 @default.
- W3022204047 cites W2086625916 @default.
- W3022204047 cites W2089864491 @default.
- W3022204047 cites W2104737419 @default.
- W3022204047 cites W2128398549 @default.
- W3022204047 cites W2191080383 @default.
- W3022204047 cites W224100268 @default.
- W3022204047 cites W2329446157 @default.
- W3022204047 cites W2331156315 @default.
- W3022204047 cites W2414781026 @default.
- W3022204047 cites W2481776138 @default.
- W3022204047 cites W2530466992 @default.
- W3022204047 cites W2548979796 @default.
- W3022204047 cites W2552493501 @default.
- W3022204047 cites W2590223535 @default.
- W3022204047 cites W2606511494 @default.
- W3022204047 cites W2611301389 @default.
- W3022204047 cites W2614955005 @default.
- W3022204047 cites W2722472488 @default.
- W3022204047 cites W2725566319 @default.
- W3022204047 cites W2734780251 @default.
- W3022204047 cites W2735214340 @default.
- W3022204047 cites W2754004453 @default.
- W3022204047 cites W2771073832 @default.
- W3022204047 cites W2803993460 @default.
- W3022204047 cites W2883150550 @default.
- W3022204047 cites W2912329568 @default.
- W3022204047 cites W2942737350 @default.
- W3022204047 cites W2953506880 @default.
- W3022204047 cites W3006093487 @default.
- W3022204047 doi "https://doi.org/10.1016/j.molliq.2020.113043" @default.
- W3022204047 hasPublicationYear "2020" @default.
- W3022204047 type Work @default.
- W3022204047 sameAs 3022204047 @default.
- W3022204047 citedByCount "19" @default.
- W3022204047 countsByYear W30222040472020 @default.
- W3022204047 countsByYear W30222040472021 @default.
- W3022204047 countsByYear W30222040472022 @default.
- W3022204047 countsByYear W30222040472023 @default.
- W3022204047 crossrefType "journal-article" @default.
- W3022204047 hasAuthorship W3022204047A5042219961 @default.
- W3022204047 hasAuthorship W3022204047A5047197373 @default.
- W3022204047 hasAuthorship W3022204047A5052622672 @default.
- W3022204047 hasConcept C105569014 @default.
- W3022204047 hasConcept C127413603 @default.
- W3022204047 hasConcept C159985019 @default.
- W3022204047 hasConcept C192562407 @default.
- W3022204047 hasConcept C42360764 @default.
- W3022204047 hasConcept C6648577 @default.
- W3022204047 hasConceptScore W3022204047C105569014 @default.
- W3022204047 hasConceptScore W3022204047C127413603 @default.
- W3022204047 hasConceptScore W3022204047C159985019 @default.
- W3022204047 hasConceptScore W3022204047C192562407 @default.
- W3022204047 hasConceptScore W3022204047C42360764 @default.
- W3022204047 hasConceptScore W3022204047C6648577 @default.
- W3022204047 hasLocation W30222040471 @default.
- W3022204047 hasOpenAccess W3022204047 @default.
- W3022204047 hasPrimaryLocation W30222040471 @default.
- W3022204047 hasRelatedWork W2043535345 @default.
- W3022204047 hasRelatedWork W2075580692 @default.
- W3022204047 hasRelatedWork W2090117853 @default.
- W3022204047 hasRelatedWork W2093275523 @default.
- W3022204047 hasRelatedWork W2384279159 @default.
- W3022204047 hasRelatedWork W3217655388 @default.
- W3022204047 hasRelatedWork W4247820597 @default.
- W3022204047 hasRelatedWork W4290564991 @default.