Matches in SemOpenAlex for { <https://semopenalex.org/work/W3022205909> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W3022205909 abstract "This thesis is focused on investigating the possibility of synthesizing polyhydroxylated fullerene/fullerenol from the ultrasonic dispersal of Buckminster fullerene (C60). Interestingly, ultrasonic dispersion of fullerene may result into potential fullerenol moieties, the prospect of which has long been overlooked to date and unnoted by others, hence it lacks quantitative analysis in explaining the possibility. On this context, based on some of the established facts, this thesis is going to evidence the possibility that when pristine fullerene is dispersed in an aqueous medium by ultrasonication, the acoustic cavitation resulting from sonication orchestrates the hydroxylation of fullerene to fullerenol moieties instead of hydration of fullerene molecules in the aqueous medium. This thesis deals with the above-raised possibility with a series of analytical studies and quantitative analysis which ultimately has proven that potential fullerenol moieties could be synthesized by the technique of ultrasonication, and this thesis is first to report that the most possible molecular structure of the potential fullerenol to be synthesized is C60(OH)8.2H2O with a yield up to 4.0%. The formation of fullerenol and the possible molecular structure of the synthesized fullerenol was confirmed by FTIR analysis and TGA. A clear broad peak at 3395 cm-1 of -OH group coupled with other supporting bond stretching of C=C, C-O-H and C-O at 1625, 1427 and 1057 cm-1 respectively confirmed the formation of hydroxylated C60. The molecular weight calculation based on the percentage of C (82.6 %) and O (17.2%) obtained from FESEM analysis as well as the percentage of C (80.52 wt%) and H (0.96%) obtained from CHN elemental analysis, has proven that the fullerene was hydroxylated with eight -OH groups. TGA result showed 5.58 wt% degradation of the synthesized fullerenol from room temperature up to 100 oC which could be attributed to two molecules of water associated to the synthesized fullerenol moiety. Upon quantification, based on the data obtained from FTIR, FESEM, elemental analysis and TGA, the most possible structure of the synthesized fullerenol was found to be C60(OH)8.2H2O. The synthesized C60(OH)8.2H2O was found to be soluble both in water and DMSO at a concentration of ~0.33 mg/mL. In addition, AFM image as well as DLS analysis of the C60(OH)8.2H2O solution in DMSO showed that the particle size of C60(OH)8.2H2O synthesized by the ultrasound-assisted technique was within a range of 135-155 nm. The next part of this thesis will be focusing on the potential application of the synthesized fullerenol, [C60(OH)8.2H2O], in preparing a folic acid-based electrochemical biosensor for the detection of a cancer biomarker folate receptor alpha. Fullerenols containing a different number of hydroxy groups derived via other organic synthesis techniques have previously been used in detecting cancer biomarker. Based on that scope, in this thesis it was investigated whether fullerenol, [C60(OH)8.2H2O], synthesized by the proposed method of ultrasonication can perform as a suitable nano-mediator in fabricating a biosensor for the detection of a cancer biomarker folate receptor alpha, which will provide some guidelines for others working in the similar area or related fields of science. Current studies, presented in this thesis show that a biosensor prepared by a simple combination of folic acid and the synthesized C60(OH)8.2H2O can detect folate receptor alpha up to 1 nM at a sensitivity of 3 µA/nM.cm2, where the stability and the reproducibility of the biosensor were 93% and 86% respectively.Moreover, developing an electrochemical biosensor using a different combination of analytes, ligands, electrodes and electrolytes always comes with new challenges and this thesis also reports on the research investigations into those most important facts and factors to be associated with designing a folate receptor biosensor in presence of the synthesized fullerenol and folic acid as well as has attempted to provide some useful insights on how to deal with the issues that one might come across while designing and developing a biosensor to target folate receptor alpha with a combination of folic acid and fullerenol. On this ground, there are always some rooms for future studies and at the end of this thesis a potential idea of a ‘facile bioconjugation’ between folic acid and reference fullerenols [C60(OH)10.5H2O, C60(OH)36.8H2O, C60(OH)44.8H2O] has been proposed in providing some directions toward overcoming the existing issues related to developing folic acid-fullerenol based electrochemical biosensor for the detection of folate receptor alpha." @default.
- W3022205909 created "2020-05-13" @default.
- W3022205909 creator A5029897255 @default.
- W3022205909 date "2018-02-24" @default.
- W3022205909 modified "2023-09-29" @default.
- W3022205909 title "Ultrasonic dispersal of buckminster fullerene [c60] leads to the formation of [8-hydroxy]fullerenol : synthesis and application" @default.
- W3022205909 hasPublicationYear "2018" @default.
- W3022205909 type Work @default.
- W3022205909 sameAs 3022205909 @default.
- W3022205909 citedByCount "0" @default.
- W3022205909 crossrefType "dissertation" @default.
- W3022205909 hasAuthorship W3022205909A5029897255 @default.
- W3022205909 hasConcept C104628117 @default.
- W3022205909 hasConcept C127413603 @default.
- W3022205909 hasConcept C151730666 @default.
- W3022205909 hasConcept C162862793 @default.
- W3022205909 hasConcept C178790620 @default.
- W3022205909 hasConcept C184651966 @default.
- W3022205909 hasConcept C185592680 @default.
- W3022205909 hasConcept C192562407 @default.
- W3022205909 hasConcept C2779343474 @default.
- W3022205909 hasConcept C32909587 @default.
- W3022205909 hasConcept C42360764 @default.
- W3022205909 hasConcept C43617362 @default.
- W3022205909 hasConcept C82188760 @default.
- W3022205909 hasConcept C86803240 @default.
- W3022205909 hasConceptScore W3022205909C104628117 @default.
- W3022205909 hasConceptScore W3022205909C127413603 @default.
- W3022205909 hasConceptScore W3022205909C151730666 @default.
- W3022205909 hasConceptScore W3022205909C162862793 @default.
- W3022205909 hasConceptScore W3022205909C178790620 @default.
- W3022205909 hasConceptScore W3022205909C184651966 @default.
- W3022205909 hasConceptScore W3022205909C185592680 @default.
- W3022205909 hasConceptScore W3022205909C192562407 @default.
- W3022205909 hasConceptScore W3022205909C2779343474 @default.
- W3022205909 hasConceptScore W3022205909C32909587 @default.
- W3022205909 hasConceptScore W3022205909C42360764 @default.
- W3022205909 hasConceptScore W3022205909C43617362 @default.
- W3022205909 hasConceptScore W3022205909C82188760 @default.
- W3022205909 hasConceptScore W3022205909C86803240 @default.
- W3022205909 hasLocation W30222059091 @default.
- W3022205909 hasOpenAccess W3022205909 @default.
- W3022205909 hasPrimaryLocation W30222059091 @default.
- W3022205909 hasRelatedWork W1995841939 @default.
- W3022205909 hasRelatedWork W2019726532 @default.
- W3022205909 hasRelatedWork W2083317563 @default.
- W3022205909 hasRelatedWork W2083682692 @default.
- W3022205909 hasRelatedWork W2269211947 @default.
- W3022205909 hasRelatedWork W2526960726 @default.
- W3022205909 hasRelatedWork W3085870912 @default.
- W3022205909 hasRelatedWork W3109280534 @default.
- W3022205909 isParatext "false" @default.
- W3022205909 isRetracted "false" @default.
- W3022205909 magId "3022205909" @default.
- W3022205909 workType "dissertation" @default.