Matches in SemOpenAlex for { <https://semopenalex.org/work/W3022272210> ?p ?o ?g. }
- W3022272210 endingPage "41" @default.
- W3022272210 startingPage "25" @default.
- W3022272210 abstract "A particle filter approach for general mixed-frequency state-space models is considered. It employs a backward smoother to filter high-frequency state variables from low-frequency observations. Moreover, it preserves the sequential nature of particle filters, allows for non-Gaussian shocks and nonlinear state-measurement relation, and alleviates the concern over sample degeneracy. Simulation studies show that it outperforms the commonly used state-augmented approach for mixed-frequency data for filtering and smoothing. In an empirical exercise, predictive mixed-frequency regressions are employed for Treasury bond and US dollar index returns with quarterly predictors and monthly stochastic volatility. Stochastic volatility improves model inference and forecasting power in a mixed-frequency setup but not for quarterly aggregate models." @default.
- W3022272210 created "2020-05-13" @default.
- W3022272210 creator A5073309846 @default.
- W3022272210 creator A5077315939 @default.
- W3022272210 date "2019-10-01" @default.
- W3022272210 modified "2023-10-17" @default.
- W3022272210 title "Particle filtering, learning, and smoothing for mixed-frequency state-space models" @default.
- W3022272210 cites W1501586228 @default.
- W3022272210 cites W1515971793 @default.
- W3022272210 cites W1970487353 @default.
- W3022272210 cites W1985037657 @default.
- W3022272210 cites W1988827501 @default.
- W3022272210 cites W2053752134 @default.
- W3022272210 cites W2064978316 @default.
- W3022272210 cites W2068326366 @default.
- W3022272210 cites W2111735276 @default.
- W3022272210 cites W2114505709 @default.
- W3022272210 cites W2121448470 @default.
- W3022272210 cites W2126736494 @default.
- W3022272210 cites W2131598171 @default.
- W3022272210 cites W2144031751 @default.
- W3022272210 cites W2148613679 @default.
- W3022272210 cites W2150751859 @default.
- W3022272210 cites W2233673592 @default.
- W3022272210 cites W2329976112 @default.
- W3022272210 cites W2552844899 @default.
- W3022272210 cites W2614466292 @default.
- W3022272210 cites W2700133733 @default.
- W3022272210 cites W2802344418 @default.
- W3022272210 cites W2964143181 @default.
- W3022272210 cites W3121154744 @default.
- W3022272210 cites W3121493137 @default.
- W3022272210 cites W3123321000 @default.
- W3022272210 cites W3123975874 @default.
- W3022272210 cites W3124947165 @default.
- W3022272210 cites W3125253874 @default.
- W3022272210 cites W3125354398 @default.
- W3022272210 cites W3125419987 @default.
- W3022272210 cites W4229721654 @default.
- W3022272210 doi "https://doi.org/10.1016/j.ecosta.2019.07.001" @default.
- W3022272210 hasPublicationYear "2019" @default.
- W3022272210 type Work @default.
- W3022272210 sameAs 3022272210 @default.
- W3022272210 citedByCount "6" @default.
- W3022272210 countsByYear W30222722102019 @default.
- W3022272210 countsByYear W30222722102020 @default.
- W3022272210 countsByYear W30222722102021 @default.
- W3022272210 countsByYear W30222722102023 @default.
- W3022272210 crossrefType "journal-article" @default.
- W3022272210 hasAuthorship W3022272210A5073309846 @default.
- W3022272210 hasAuthorship W3022272210A5077315939 @default.
- W3022272210 hasBestOaLocation W30222722102 @default.
- W3022272210 hasConcept C105795698 @default.
- W3022272210 hasConcept C11413529 @default.
- W3022272210 hasConcept C121332964 @default.
- W3022272210 hasConcept C129537906 @default.
- W3022272210 hasConcept C149782125 @default.
- W3022272210 hasConcept C157286648 @default.
- W3022272210 hasConcept C158622935 @default.
- W3022272210 hasConcept C163716315 @default.
- W3022272210 hasConcept C206833254 @default.
- W3022272210 hasConcept C28826006 @default.
- W3022272210 hasConcept C33923547 @default.
- W3022272210 hasConcept C3770464 @default.
- W3022272210 hasConcept C41008148 @default.
- W3022272210 hasConcept C52421305 @default.
- W3022272210 hasConcept C52483021 @default.
- W3022272210 hasConcept C52918065 @default.
- W3022272210 hasConcept C60092789 @default.
- W3022272210 hasConcept C62520636 @default.
- W3022272210 hasConcept C72434380 @default.
- W3022272210 hasConcept C79334102 @default.
- W3022272210 hasConcept C85393063 @default.
- W3022272210 hasConcept C91602232 @default.
- W3022272210 hasConcept C97355855 @default.
- W3022272210 hasConceptScore W3022272210C105795698 @default.
- W3022272210 hasConceptScore W3022272210C11413529 @default.
- W3022272210 hasConceptScore W3022272210C121332964 @default.
- W3022272210 hasConceptScore W3022272210C129537906 @default.
- W3022272210 hasConceptScore W3022272210C149782125 @default.
- W3022272210 hasConceptScore W3022272210C157286648 @default.
- W3022272210 hasConceptScore W3022272210C158622935 @default.
- W3022272210 hasConceptScore W3022272210C163716315 @default.
- W3022272210 hasConceptScore W3022272210C206833254 @default.
- W3022272210 hasConceptScore W3022272210C28826006 @default.
- W3022272210 hasConceptScore W3022272210C33923547 @default.
- W3022272210 hasConceptScore W3022272210C3770464 @default.
- W3022272210 hasConceptScore W3022272210C41008148 @default.
- W3022272210 hasConceptScore W3022272210C52421305 @default.
- W3022272210 hasConceptScore W3022272210C52483021 @default.
- W3022272210 hasConceptScore W3022272210C52918065 @default.
- W3022272210 hasConceptScore W3022272210C60092789 @default.
- W3022272210 hasConceptScore W3022272210C62520636 @default.
- W3022272210 hasConceptScore W3022272210C72434380 @default.
- W3022272210 hasConceptScore W3022272210C79334102 @default.
- W3022272210 hasConceptScore W3022272210C85393063 @default.
- W3022272210 hasConceptScore W3022272210C91602232 @default.
- W3022272210 hasConceptScore W3022272210C97355855 @default.