Matches in SemOpenAlex for { <https://semopenalex.org/work/W3022273525> ?p ?o ?g. }
- W3022273525 endingPage "44" @default.
- W3022273525 startingPage "44" @default.
- W3022273525 abstract "This paper deals with the development and comparison of prediction models established using response surface methodology (RSM) and artificial neural network (ANN) for a wire electrical discharge machining (WEDM) process. The WEDM experiments were designed using central composite design (CCD) for machining of Inconel 718 superalloy. During experimentation, the pulse-on-time (TON), pulse-off-time (TOFF), servo-voltage (SV), peak current (IP), and wire tension (WT) were chosen as control factors, whereas, the kerf width (Kf), surface roughness (Ra), and materials removal rate (MRR) were selected as performance attributes. The analysis of variance tests was performed to identify the control factors that significantly affect the performance attributes. The double hidden layer ANN model was developed using a back-propagation ANN algorithm, trained by the experimental results. The prediction accuracy of the established ANN model was found to be superior to the RSM model. Finally, the Non-Dominated Sorting Genetic Algorithm-II (NSGA- II) was implemented to determine the optimum WEDM conditions from multiple objectives." @default.
- W3022273525 created "2020-05-13" @default.
- W3022273525 creator A5013595836 @default.
- W3022273525 creator A5028924482 @default.
- W3022273525 creator A5059494982 @default.
- W3022273525 creator A5064659944 @default.
- W3022273525 date "2020-05-06" @default.
- W3022273525 modified "2023-10-11" @default.
- W3022273525 title "Response Surface Methodology and Artificial Neural Network-Based Models for Predicting Performance of Wire Electrical Discharge Machining of Inconel 718 Alloy" @default.
- W3022273525 cites W1976637985 @default.
- W3022273525 cites W1987542243 @default.
- W3022273525 cites W1990555287 @default.
- W3022273525 cites W1991786676 @default.
- W3022273525 cites W2001761323 @default.
- W3022273525 cites W2002367010 @default.
- W3022273525 cites W2003171201 @default.
- W3022273525 cites W2017222441 @default.
- W3022273525 cites W2017566021 @default.
- W3022273525 cites W2019810674 @default.
- W3022273525 cites W2020509880 @default.
- W3022273525 cites W2022273109 @default.
- W3022273525 cites W2028792730 @default.
- W3022273525 cites W2029618280 @default.
- W3022273525 cites W2034984142 @default.
- W3022273525 cites W2037137778 @default.
- W3022273525 cites W2040070561 @default.
- W3022273525 cites W2045641612 @default.
- W3022273525 cites W2055519742 @default.
- W3022273525 cites W2056071765 @default.
- W3022273525 cites W2065423061 @default.
- W3022273525 cites W2074059740 @default.
- W3022273525 cites W2075314456 @default.
- W3022273525 cites W2085780560 @default.
- W3022273525 cites W2086840150 @default.
- W3022273525 cites W2092428420 @default.
- W3022273525 cites W2117723621 @default.
- W3022273525 cites W2126105956 @default.
- W3022273525 cites W2151329031 @default.
- W3022273525 cites W2152779201 @default.
- W3022273525 cites W2153117418 @default.
- W3022273525 cites W2286678106 @default.
- W3022273525 cites W2337724211 @default.
- W3022273525 cites W2429308049 @default.
- W3022273525 cites W2530060175 @default.
- W3022273525 cites W2582174159 @default.
- W3022273525 cites W2600845942 @default.
- W3022273525 cites W2616049394 @default.
- W3022273525 cites W2625492692 @default.
- W3022273525 cites W2731829471 @default.
- W3022273525 cites W2740160182 @default.
- W3022273525 cites W2763207974 @default.
- W3022273525 cites W2769575840 @default.
- W3022273525 cites W2789637048 @default.
- W3022273525 cites W2799380858 @default.
- W3022273525 cites W2888992897 @default.
- W3022273525 cites W2901728380 @default.
- W3022273525 cites W2913320820 @default.
- W3022273525 cites W2915006505 @default.
- W3022273525 cites W324159412 @default.
- W3022273525 doi "https://doi.org/10.3390/jmmp4020044" @default.
- W3022273525 hasPublicationYear "2020" @default.
- W3022273525 type Work @default.
- W3022273525 sameAs 3022273525 @default.
- W3022273525 citedByCount "22" @default.
- W3022273525 countsByYear W30222735252021 @default.
- W3022273525 countsByYear W30222735252022 @default.
- W3022273525 countsByYear W30222735252023 @default.
- W3022273525 crossrefType "journal-article" @default.
- W3022273525 hasAuthorship W3022273525A5013595836 @default.
- W3022273525 hasAuthorship W3022273525A5028924482 @default.
- W3022273525 hasAuthorship W3022273525A5059494982 @default.
- W3022273525 hasAuthorship W3022273525A5064659944 @default.
- W3022273525 hasBestOaLocation W30222735251 @default.
- W3022273525 hasConcept C107354338 @default.
- W3022273525 hasConcept C107365816 @default.
- W3022273525 hasConcept C119599485 @default.
- W3022273525 hasConcept C119857082 @default.
- W3022273525 hasConcept C127413603 @default.
- W3022273525 hasConcept C140075996 @default.
- W3022273525 hasConcept C150077022 @default.
- W3022273525 hasConcept C154945302 @default.
- W3022273525 hasConcept C159985019 @default.
- W3022273525 hasConcept C165801399 @default.
- W3022273525 hasConcept C191897082 @default.
- W3022273525 hasConcept C192562407 @default.
- W3022273525 hasConcept C207055975 @default.
- W3022273525 hasConcept C2778703219 @default.
- W3022273525 hasConcept C2780026712 @default.
- W3022273525 hasConcept C41008148 @default.
- W3022273525 hasConcept C50644808 @default.
- W3022273525 hasConcept C523214423 @default.
- W3022273525 hasConcept C78519656 @default.
- W3022273525 hasConcept C8880873 @default.
- W3022273525 hasConcept C92397422 @default.
- W3022273525 hasConceptScore W3022273525C107354338 @default.
- W3022273525 hasConceptScore W3022273525C107365816 @default.
- W3022273525 hasConceptScore W3022273525C119599485 @default.
- W3022273525 hasConceptScore W3022273525C119857082 @default.