Matches in SemOpenAlex for { <https://semopenalex.org/work/W3022290141> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W3022290141 endingPage "231" @default.
- W3022290141 startingPage "219" @default.
- W3022290141 abstract "Dynamic acquisition of crop morphology is beneficial to real-time variable decision of precise spraying operations in fields. However, the existing spraying quantity regulation has high tolerance on the statistical characteristics of regional morphology, so expensive LiDAR and ultrasonic radar can't make full use of their high accuracy, and can reduce decision speed because of too much detail of branches and leaves. Therefore, designing a novel recognition system embedded machine learning with low-cost monocular vision is more feasible, especially in China, where the agricultural implements are medium sizes and cost-sensitive. In addition, we found that the growth period of crops is an important reference index for guiding spraying. So, taking cotton as a case study, a cotton morphology acquisition by a single camera is established, and a cotton growth period recognition algorithm based on Convolution Neural Network (CNN) is proposed in this paper. Through the optimization process based on confusion matrix and recognition efficiency, an optimized CNN model structure is determined from 9 different model structures, and its reliability was verified by changing training sets and test sets many times based on the idea of k-fold test. The accuracy, precision, recall, F1-score and recognition speed of this CNN model are 93.27%, 95.39%, 94.31%, 94.76% and 71.46 ms per image, respectively. In addition, compared with the performance of VGG16 and AlexNet, the convolution neural network model proposed in this paper has better performance. Finally, in order to verify the reliability of the designed recognition system and the feasibility of the spray decision-making algorithm based on CNN, spraying deposition experiments were carried out with 3 different growth-periods of cotton. The experiments’ results validate that after the optimal spray parameters were applied at different growth periods respectively, the average optimum index in 3 growth periods was 42.29%, which was increased up to 62.24% than the operations without distinguishing growth periods." @default.
- W3022290141 created "2020-05-13" @default.
- W3022290141 creator A5002069152 @default.
- W3022290141 creator A5006371369 @default.
- W3022290141 creator A5063701397 @default.
- W3022290141 creator A5064842058 @default.
- W3022290141 creator A5073882754 @default.
- W3022290141 creator A5082920363 @default.
- W3022290141 date "2021-06-01" @default.
- W3022290141 modified "2023-09-23" @default.
- W3022290141 title "Recognition of cotton growth period for precise spraying based on convolution neural network" @default.
- W3022290141 cites W1980739446 @default.
- W3022290141 cites W1995202402 @default.
- W3022290141 cites W2076428040 @default.
- W3022290141 cites W2089040011 @default.
- W3022290141 cites W2127603379 @default.
- W3022290141 cites W2520364485 @default.
- W3022290141 cites W2531609949 @default.
- W3022290141 cites W2546512698 @default.
- W3022290141 cites W2548135478 @default.
- W3022290141 cites W2548258044 @default.
- W3022290141 cites W2552451861 @default.
- W3022290141 cites W2573554607 @default.
- W3022290141 cites W2587218622 @default.
- W3022290141 cites W2589112598 @default.
- W3022290141 cites W2602322415 @default.
- W3022290141 cites W2622826443 @default.
- W3022290141 cites W2742251713 @default.
- W3022290141 cites W2763644377 @default.
- W3022290141 cites W2803705151 @default.
- W3022290141 cites W2806909025 @default.
- W3022290141 cites W2928966002 @default.
- W3022290141 cites W2976292222 @default.
- W3022290141 cites W2993973806 @default.
- W3022290141 cites W561848073 @default.
- W3022290141 doi "https://doi.org/10.1016/j.inpa.2020.05.001" @default.
- W3022290141 hasPublicationYear "2021" @default.
- W3022290141 type Work @default.
- W3022290141 sameAs 3022290141 @default.
- W3022290141 citedByCount "4" @default.
- W3022290141 countsByYear W30222901412022 @default.
- W3022290141 crossrefType "journal-article" @default.
- W3022290141 hasAuthorship W3022290141A5002069152 @default.
- W3022290141 hasAuthorship W3022290141A5006371369 @default.
- W3022290141 hasAuthorship W3022290141A5063701397 @default.
- W3022290141 hasAuthorship W3022290141A5064842058 @default.
- W3022290141 hasAuthorship W3022290141A5073882754 @default.
- W3022290141 hasAuthorship W3022290141A5082920363 @default.
- W3022290141 hasBestOaLocation W30222901411 @default.
- W3022290141 hasConcept C121332964 @default.
- W3022290141 hasConcept C138602881 @default.
- W3022290141 hasConcept C153180895 @default.
- W3022290141 hasConcept C154945302 @default.
- W3022290141 hasConcept C163258240 @default.
- W3022290141 hasConcept C41008148 @default.
- W3022290141 hasConcept C43214815 @default.
- W3022290141 hasConcept C45347329 @default.
- W3022290141 hasConcept C50644808 @default.
- W3022290141 hasConcept C62520636 @default.
- W3022290141 hasConcept C81363708 @default.
- W3022290141 hasConceptScore W3022290141C121332964 @default.
- W3022290141 hasConceptScore W3022290141C138602881 @default.
- W3022290141 hasConceptScore W3022290141C153180895 @default.
- W3022290141 hasConceptScore W3022290141C154945302 @default.
- W3022290141 hasConceptScore W3022290141C163258240 @default.
- W3022290141 hasConceptScore W3022290141C41008148 @default.
- W3022290141 hasConceptScore W3022290141C43214815 @default.
- W3022290141 hasConceptScore W3022290141C45347329 @default.
- W3022290141 hasConceptScore W3022290141C50644808 @default.
- W3022290141 hasConceptScore W3022290141C62520636 @default.
- W3022290141 hasConceptScore W3022290141C81363708 @default.
- W3022290141 hasFunder F4320321001 @default.
- W3022290141 hasFunder F4320324174 @default.
- W3022290141 hasFunder F4320337504 @default.
- W3022290141 hasIssue "2" @default.
- W3022290141 hasLocation W30222901411 @default.
- W3022290141 hasLocation W30222901412 @default.
- W3022290141 hasOpenAccess W3022290141 @default.
- W3022290141 hasPrimaryLocation W30222901411 @default.
- W3022290141 hasRelatedWork W2175746458 @default.
- W3022290141 hasRelatedWork W2732542196 @default.
- W3022290141 hasRelatedWork W2738221750 @default.
- W3022290141 hasRelatedWork W2760085659 @default.
- W3022290141 hasRelatedWork W2767651786 @default.
- W3022290141 hasRelatedWork W2883200793 @default.
- W3022290141 hasRelatedWork W2912288872 @default.
- W3022290141 hasRelatedWork W3012978760 @default.
- W3022290141 hasRelatedWork W3093612317 @default.
- W3022290141 hasRelatedWork W4312417841 @default.
- W3022290141 hasVolume "8" @default.
- W3022290141 isParatext "false" @default.
- W3022290141 isRetracted "false" @default.
- W3022290141 magId "3022290141" @default.
- W3022290141 workType "article" @default.