Matches in SemOpenAlex for { <https://semopenalex.org/work/W3022362788> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3022362788 abstract "PPG-based heart rate estimation has been widely adopted in wrist-worn devices. However, the motion artifacts caused by the user's physical activities make it difficult to get the accurate HR estimation from contaminated PPG signals. Although many signal processing methods have been proposed to address this challenge, they are often highly optimized for specific scenarios (e.g., running or biking), making them impractical in real-world settings where a user may perform a wide range of physical activities. In this paper, we propose DeepHeart, a new HR estimation approach that features deep-learning-based denoising and spectrum-analysis-based calibration. DeepHeart generates clean PPG signals from ECG signals based on a training data set. Then a denoising convolutional neural network (DnCNN) is trained with the contaminated PPG signals and their corresponding clean PPG signals. Contaminated PPG signals are then denoised by the DnCNN and a spectrum-analysis-based calibration is performed to estimate the final HR. We evaluate DeepHeart on the IEEE Signal Processing Cup (SPC) training data set with 12 records collected during various physical activities. DeepHeart achieves an average absolute error of 1.98 bpm, outperforming two state-of-the-art methods TROIKA and Deep PPG." @default.
- W3022362788 created "2020-05-13" @default.
- W3022362788 creator A5022028229 @default.
- W3022362788 creator A5035823334 @default.
- W3022362788 creator A5039099199 @default.
- W3022362788 creator A5072780737 @default.
- W3022362788 creator A5082120743 @default.
- W3022362788 date "2019-11-01" @default.
- W3022362788 modified "2023-09-27" @default.
- W3022362788 title "DeepHeart: Accurate Heart Rate Estimation from PPG Signals Based on Deep Learning" @default.
- W3022362788 cites W1946234387 @default.
- W3022362788 cites W2005741801 @default.
- W3022362788 cites W2103675325 @default.
- W3022362788 cites W2117987876 @default.
- W3022362788 cites W2151713296 @default.
- W3022362788 cites W2159674655 @default.
- W3022362788 cites W2204117563 @default.
- W3022362788 cites W2230041813 @default.
- W3022362788 cites W2288945889 @default.
- W3022362788 cites W2294589404 @default.
- W3022362788 cites W2473577927 @default.
- W3022362788 cites W2508457857 @default.
- W3022362788 cites W2538635319 @default.
- W3022362788 cites W2566333973 @default.
- W3022362788 cites W2610645870 @default.
- W3022362788 cites W2624977070 @default.
- W3022362788 cites W2790354967 @default.
- W3022362788 cites W2892061408 @default.
- W3022362788 cites W2910830939 @default.
- W3022362788 cites W4245509891 @default.
- W3022362788 cites W748353639 @default.
- W3022362788 cites W976490810 @default.
- W3022362788 doi "https://doi.org/10.1109/mass.2019.00051" @default.
- W3022362788 hasPublicationYear "2019" @default.
- W3022362788 type Work @default.
- W3022362788 sameAs 3022362788 @default.
- W3022362788 citedByCount "8" @default.
- W3022362788 countsByYear W30223627882021 @default.
- W3022362788 countsByYear W30223627882022 @default.
- W3022362788 crossrefType "proceedings-article" @default.
- W3022362788 hasAuthorship W3022362788A5022028229 @default.
- W3022362788 hasAuthorship W3022362788A5035823334 @default.
- W3022362788 hasAuthorship W3022362788A5039099199 @default.
- W3022362788 hasAuthorship W3022362788A5072780737 @default.
- W3022362788 hasAuthorship W3022362788A5082120743 @default.
- W3022362788 hasConcept C108583219 @default.
- W3022362788 hasConcept C127413603 @default.
- W3022362788 hasConcept C153180895 @default.
- W3022362788 hasConcept C154945302 @default.
- W3022362788 hasConcept C201995342 @default.
- W3022362788 hasConcept C28490314 @default.
- W3022362788 hasConcept C31972630 @default.
- W3022362788 hasConcept C41008148 @default.
- W3022362788 hasConcept C96250715 @default.
- W3022362788 hasConceptScore W3022362788C108583219 @default.
- W3022362788 hasConceptScore W3022362788C127413603 @default.
- W3022362788 hasConceptScore W3022362788C153180895 @default.
- W3022362788 hasConceptScore W3022362788C154945302 @default.
- W3022362788 hasConceptScore W3022362788C201995342 @default.
- W3022362788 hasConceptScore W3022362788C28490314 @default.
- W3022362788 hasConceptScore W3022362788C31972630 @default.
- W3022362788 hasConceptScore W3022362788C41008148 @default.
- W3022362788 hasConceptScore W3022362788C96250715 @default.
- W3022362788 hasLocation W30223627881 @default.
- W3022362788 hasOpenAccess W3022362788 @default.
- W3022362788 hasPrimaryLocation W30223627881 @default.
- W3022362788 hasRelatedWork W2005051400 @default.
- W3022362788 hasRelatedWork W2088610186 @default.
- W3022362788 hasRelatedWork W2738221750 @default.
- W3022362788 hasRelatedWork W2773120646 @default.
- W3022362788 hasRelatedWork W2965045533 @default.
- W3022362788 hasRelatedWork W3156786002 @default.
- W3022362788 hasRelatedWork W3208028783 @default.
- W3022362788 hasRelatedWork W4211209597 @default.
- W3022362788 hasRelatedWork W4245792239 @default.
- W3022362788 hasRelatedWork W3108696707 @default.
- W3022362788 isParatext "false" @default.
- W3022362788 isRetracted "false" @default.
- W3022362788 magId "3022362788" @default.
- W3022362788 workType "article" @default.